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ABSTRACT 

 
This study sought to assess the influence of causal factors related to anthropogenic 
activities on landslide occurrence in Bukit Antarabangsa, a township northeast of Kuala 
Lumpur in Ampang Jaya Municipal Council. Anthropogenic factors were chosen based 
on the township’s rapid growth, numerous landslide records and intensity of hillside 
development. The study used a data-driven statistical model to identify factors most 
predictive of landslide occurrence based on an inventory of 20 landslides, and to 
evaluate the extent to which susceptibility was driven by factors related to urban 
development. A total of 17 factors were categorized into four clusters (geological, 
geomorphological, hydro-tographical and anthropogenic). Factor maps were classified 
to derive factor classes for each parameter. The dataset was then processed using a 
weight-of-evidence statistical model to determine the contrast value of each factor 
class. Contrast value (C) reflects the extent to which each factor class predicts landslide 
occurrence. The C-weighted factor maps were then combined to derive the landslide 
susceptibility index (LSI). The LSI enabled visualization of the spatial distribution of 
susceptibility based on a given combination of factors. Susceptibility maps were 
prepared for combinations containing only non-anthropogenic parameters and all 
landslide parameters. The study compared these combinations to determine the 
influence of anthropogenic factors on total LSI. Similar analyses were conducted to 
determine the effect of each anthropogenic factor on LSI. The results indicated that 
lineament density, distance to lineament and distance to road had a significant influence 
on landslide occurrence. A strong correlation with landslide occurrence was observed 
for land use/land cover, especially in high susceptibility zones, followed closely by the 
influence of one distance to road factor class. The results could be useful in planning 
infrastructure corridors in densely built-up landslide-prone areas. 
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1.  Introduction 
 
Landslides are common in hilly and mountainous parts of 
Malaysia, and result in major losses of economic and 
environmental resources, including human fatalities (Akter et 

al., 2019). Landslide occurrence in Malaysia has been attributed 
to a number of factors, the most notable among these being 
design errors due to insufficient site-specific ground 
investigation (Kazmi et al., 2016). The prevalence of man-made 
causal factors ties in with Malaysia’s rapid urbanization and 
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development of highland and hilly terrain (Nor Diana et al., 
2021), and points to a possible trend towards development 
beyond control of land use. Numerous studies on landslide risk 
focused on geological, geomorphological, hydro-topographical 
factors, although the hydrological effect of vegetation on 
rainfall-induced landslides has been rarely assessed (Gonzalez-
Ollauri & Mickovski, 2017). Geographical Information Systems 
(GIS) are applied to landslide disaster preparedness primarily 
through geospatial mapping to determine an area’s landslide 
susceptibility, hazard and risk, which enables planning 
authorities to carry out appropriate zonation for urban 
development based on landslide risk. 
 
This study focuses on landslide susceptibility, which is typically 
the first stage of landslide hazard and risk analysis (Dikshit et 
al., 2020). Landslide susceptibility addresses the question of 
“where could landslides occur?”, and can be seen as an 
estimation of the spatial probability of landslide occurrence at a 
given location (Hervás et al., 2007). To date, there have been a 
number of studies on landslide susceptibility in Peninsular 
Malaysia, the majority of which have focused on natural (i.e. 
geological, geomorphological, hydro-topographical) and, to 
some extent, anthropogenic factors. What remains less clear is 
the link between slope instability possibly attributed to 
anthropogenic causal factors related to urban development and 
landslide occurrence. 
 
In Malaysia, numerous studies have been carried out on 
landslide mapping and risk zonation; however, few have 
focused on aspects such as causal factor analysis, sensitivity 
analysis and socio-economic characterization (Akter et al., 
2019). This challenge has been observed despite a growing 
acknowledgment that landslide occurrence is being driven by 
natural as well as anthropogenic factors. Land urbanization has 
been linked to an increased likelihood of landslides, largely due 
to physical disturbances that result in reduced vegetation cover 
and cutting of natural slopes (Li et al., 2017). While 
urbanization on its own does not necessarily increase the 
likelihood of landslide occurrences, the pressure for more land 
can lead to building in areas that are susceptible to landslides 
(Klimeš & Novotný, 2011).  
 
The area of study, Bukit Antarabangsa in Ampang Jaya 
Municipal Council (MPAJ), is one of the most landslide-prone 
regions in Malaysia, and recorded six landslide events in the 
period from 1993 to 2014 (Akter et al., 2019). The 
consequences of landslide occurrences in this area range from 
damage of roads and residential property to loss of life (Nor 
Diana et al., 2021). Bukit Antarabangsa is also a rapidly 
growing peri-urban area with considerable hillside 
development. Recent studies of this area have highlighted 

construction design errors and precipitation as main causal 
factors of landslide occurrence (Kazmi et al., 2017). However, 
the rapid urban development of the area, and subsequent 
increase in surface runoff could play a role in the area’s 
proneness to slope failure (Majid et al., 2020). In Bukit 
Antarabangsa, improper planning and the continued 
development of hilly areas have been cited as contributing 
factors arising from human activity (Shafie et al., 2013). While 
the geology of the area remains fairly stable, the ongoing urban 
expansion has led to deforestation, which has in turn 
exacerbated weathering and erosion (Hassaballa et al., 2014)). 
The lithology of this area is characterized by extensive 
weathering which has turned granite into residual soil and fully 
weathered material that is prone to rapid loss of consistency 
when highly saturated (Chigira et al., 2011). The area is also 
typified by undulating topography with presence of streams and 
rivers, and a high population density (Izumi et al., 2019). Land 
use ranges from natural forest recreational areas to commercial 
and residential developments. The ongoing urbanization of this 
area has been attributed to deforestation which has in turn 
resulted in weathering and erosion that are a threat to slope 
stability (Hassaballa et al., 2014).  
 
This research seeks to assess the influence of anthropogenic 
causal factors on landslide susceptibility in a landslide prone 
area using a data-driven geospatial method. It seeks to 
determine whether or not approaches that address housing and 
infrastructure development can provide a basis for sustainable, 
low-cost landslide risk reduction in urbanized areas. 
 
2. Methodology 
 
2.1  Description of Study Area 
 
The choice of Bukit Antarabangsa as the area of study is owed 
largely to its rapid urbanization and prominence as one of the 
major hot spots of landslide occurrence in Malaysia. The 
township is situated in Klang Valley, which is an economic 
powerhouse in the region and as a result continues to 
experience rapid urban expansion in spite of landslide 
prevalence. The study covers a 1.15 square kilometer area in 
the township of Bukit Antarabangsa on the northeastern extent 
of Ampang Jaya Town Council. This specific area was selected 
for its high density of landslides. Bukit Antarabangsa is a hillside 
township located in Ulu Klang District, Selangor State, and is 
under the jurisdiction of Ampang Jaya Municipal Council. It is 
centered at geographic coordinates 3°12′00″ north latitude and 
101°46′01″ north of Kuala Lumpur (Figure 1).  
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Figure 1 Study area in Bukit Antarabangsa (Ampang Jaya Municipal Council)  

 
The township has witnessed a rapid increase in infrastructure 
development owing largely to its proximity to Kuala Lumpur 
(Hassaballa et al., 2014). Bukit Antarabangsa is a well-known 
landslide prone area and was selected for this reason. Recent 
significant events include December 1993, May 1999, 
November 2002 and December 2008. Several investigations 
conducted in the period following these incidents indicated that 
the landslide was the result of several factors such as loose soil 
from earth dumping during construction, a rise in ground water 
level due to extended rainfall in the months prior to the failure, 
sustained soil creep that expanded the existing cracks and 
created new tension cracks as well as heavily leaked active 
water pipe as a result of soil creep(Ismail et al., 2019). The 
1993 landslide was responsible for the collapse of the Highland 
Tower condominium, which led to 48 fatalities. The 
occurrence of this landslide was partly attributed to presence of 
weathered granitic material which is porous, friable and inherits 
relict planes of weakness from the parent rock (Chigira et al., 
2011). The 1999 landslide took place near Athenaeum Tower 
condominium. It did not result in any fatalities but cut off the 
access road to Bukit Antarabangsa and left many people trapped 

inside their homes. The failure was attributed to non-adherence 
to the minimum factor of safety requirements, inadequate slope 
drainage, weak material in the slope body, subsurface saturation 
by rainwater, vegetation removal due to dumping, and internal 
erosion of fill materials. The geologic setting of the study area is 
characterized by granitic rock, phyllite and schist, and 
limestone with minor intercalations of phyllite, with most 
landslides occurring on granitic rock formations (Lee et al., 
2014). With a few exceptions in northern Europe and North 
America, granitic rocks in particular are known to be prone to 
weathering and thus are susceptible to landslide occurrence 
(Chigira et al., 2011). 
 
2.2   Methods  
 
This research was performed in the four major phases, namely 
selection of causal factors; data gathering and entry; data 
analysis; and model validation (Figure 2). 
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Figure 2 General method for the study  

 
 

2.2.1 Selection of Causal Factors  
 
The choice of factors was based on the review of guidelines and 
literature on the landslide mechanism and the causal factors 
specific to the area (Tian Huat et al., 2012); the selection also 
considers the availability of data. The study also considered 
Malaysian guidelines for prevention of slope failure related 
disasters (Raj, 2003) which highlight “rainfall, topography, 
drainage and vegetation cover” as four key factors related to the 
occurrence of slope failures. The landslide mechanism 

considered in this case is the shallow landslide and debris flows. 
It is worth noting that among the causal factors considered, only 
landslide conditioning factors are selected in line with 
recommendations for landslide susceptibility assessment. The 
thematic categories for landslide causal factors include 
geological; geomorphological; hydro-topographical; and 
anthropogenic factors. A description of these factors is 
presented in Table 1. 
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Table 1 Overview of Landslide Causal Factors 

 
 
 

Factor group Causal Factor Description 

Geological Distance to lineament The term lineament included faults, fractures and escarpments 
(Getachew and Meten, 2021). It expresses the surface topography of 
underlying structural features and denote regions of faulting or 
fracturing (Sonker et al., 2021). As a general principle, the potential 
for slope failure increases with a corresponding decrease in the distance 
to lineaments.  

 Lineament density  Lineament density is defined as the quotient of the total length of all 
recorded lineaments and the area under study (Edet et al., 1998). The 
lineament density of a given area is indicative of landslide susceptible 
zones (Sonker et al., 2021). A higher lineament density value typically 
correlates with a higher landslide susceptibility class.  

Geomorphological  Slope Terrain slope or slope gradient determines the spatial distribution and 
intensity of landslide occurrences, and is one of the more important 
factors that influence landslide susceptibility. An increase in the angle 
of a slope compounds slope instability, leading to an increased 
tendency for landslide occurrence (Sonker et al., 2021). Additionally, 
slope gradient has an influence on the concentration of moisture and 
the level of pore pressure at the local scale, as well as hydraulic 
continuity at larger scales (Getachew and Meten, 2021). 

 Aspect Slope aspect has a considerable effect on slope characteristics such as 
vegetation cover, retention of moisture and soil strength (Khan et al., 
2019). It determines the level of exposure of terrain to elements such 
as sunlight, wind and rain, which in turn determines the degree of 
weathering and soil moisture content (Getachew and Meten, 2021). 

 Curvature Curvature of a slope has an influence on surface runoff and therefore 
affects landslide occurrence (Nohani et al., 2019). The factor map for 
slope curvature is to be derived from a DEM, and classified into classes 
of negative and positive curvature.  

 Stream power index (SPI) Stream power index is a measure of the erosive power of a stream and 
is considered a key factor influencing slope stability (Regmi et al., 
2014). The SPI value is determined by parameters of viscosity and 
steepness of terrain (Saadatkhah et al., 2015). 

 Terrain roughness index 
(TRI) 

The terrain roughness index, also known as terrain ruggedness index, 
denotes the degree of elevation difference between adjacent grid cells 
in a DEM (Riley et al., 1999). It is a measure of the general 
heterogeneity of a given area, and reflects the degree of surface erosion 
and variability (Shirvani, 2020). 

 Terrain surface texture 
(TST) 

Terrain surface texture defines the variability in regularity and intensity 
of pits and peaks within a given radius (Furze et al., 2021). It is defined 
specifically as the number of pits and peaks within a radius of ten cells 
(Iwahashi & Pike, 2007).  

 Vector ruggedness measure 
(VRM) 

Vector ruggedness measure provides a quantification of a given area’s 
ruggedness by way of slope and aspect (Furze et al., 2021). 

Hydro-topographic Distance to river This is sometimes referred to as distance to streams. Rivers and 
streams could influence landslide occurrence by wearing the slope base 
or saturating the lower horizons of hill slopes (Mousavi et al., 2011). 
This factor is intended to test the assumption that landslides occur 
more frequently along streams (Van Westen et al., 2003).   

 Flow accumulation Flow accumulation is a quantification of the land area that channels 
surface water to zones where surface water may accumulate (Dahal et 
al., 2008).  
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2.2.2  Data Gathering and Entry 

 
The data gathering and data entry phase included data 
gathering, database design, and data manipulation. The data 
were gathered from the sources primarily comprising 
government agencies in Malaysia. These included the Mineral 
and Geoscience Department; Ampang Jaya Municipal Council; 
and the Public Works Department. The datasets with which the 
geodatabase was constructed included a set of 18 raster map 
files; landslide inventory shape file; boundary shape file for the 
study area; and 8 orthophoto raster files. The database was 
created in ESRI ArcGIS 10.8, initially with sub-folders for 
manipulated factor maps and landslide inventory-derived 
polygons. The database was built upon iteratively during 
subsequent phases to include the outputs of data manipulation 
such as resampled factor maps and reclassified factor maps. 
 
Following the construction of the study geodatabase, pre-
analysis data manipulation was carried out in order to ensure 
that -all factor maps and layers are projected to the same spatial 
reference and aligned with the study area boundary, and all 
input raster layers had the same cell size; all factor maps are 
reclassified using an appropriate classification method; 

extraction of training and validation datasets from the landslide 
inventory is performed. Resampling of factor maps to the 5m 
by 5m cell size was then carried out using a “bilinear” sampling 
method for continuous data such as slope, curvature and 
distance to river while a “nearest neighbor” method was used 
for categorical data such as land use land cover, aspect and flow 
direction. For the reclassification of factor maps, continuous 
data variables were reclassified using the “natural breaks 
(Jenks)” method, with the exception of highly skewed datasets 
namely flow accumulation and SPI. The natural breaks method 
was selected for its ability to minimize variance within groups 
of data, thus allowing for higher degree of homogeneity within 
the factor classes (Polykretis et al., 2015). For these 
exceptions, a “geometric interval” classification method was 
used in order to enable a more balanced distribution of factor 
classes across the study area.  
 
The training dataset comprised 70% of landslide polygons in the 
study area, with 30% of polygons providing the validation 
dataset (Figure 3). Prior to extraction of the training and 
validation datasets, an operation was executed to extract zones 
of landslide initiation that were used for the analytical model. 

 

Factor group Causal Factor Description 

 Flow direction Flow direction displays the direction of flow out for every terrain cell 
in a digital elevation model, and is considered an important 
characteristic of mass flow (Fan et al., 2019).  

 Stream network Stream network was subdivided into four categories (Class 1, Class 2, 
Class 3 and Class 4); however, this parameter was not used in the 
analytical model as it did not coincide with any landslide locations.  

 Topographic wetness index 
(TWI) 

Topographic wetness index reflects the tendency of water to 
accumulate at any point within a given catchment (a) in relation to the 
tendency for gravity to move the water downslope (β). It is calculated 
using the formula:  

 
 (Regmi et al., 2014). 

Anthropogenic Distance to road Road networks have a major role in influencing landslide concurrence 
(Mousavi et al., 2011). Construction of roads along slopes results in a 
decrease of the slope base, and road ditch infiltration can contribute to 
an increase in soil moisture. This factor map is widely used as a test of 
whether or not landslides occur frequently along roads, and accounts 
for anthropogenic activities such as poorly designed cut-slopes and 
roadside drainage (Van Westen et al., 2003). 

 Land use land cover Land use land cover has a significant influence on slope stability as it 
influences characteristics such as infiltration, runoff production, runoff 
production and mechanical reinforcement of soil by vegetation (Moresi 
et al., 2020). The LULC map is to be classified into classes such as 
green area, water bodies, developing area and built up area following 
selection of an appropriate classification scheme.  

 Road cut Road cuts expose joints and fractures that can make a slope unstable, 
and are often the sites of human induced instability (Regmi et al., 
2014). The road cuts are to be represented as buffers around roads 
situated on steep slopes. 
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Figure 3 Results of extraction of training and validation sets  

 
 

2.2.3  Data Analysis 

 
A total of 18 causal factor maps were examined during the data 
analysis phase. One of these factors was subsequently left out of 
the analysis due to deficiencies in the data. This was the stream 

network dataset which was excluded because it did not coincide 
with any landslide locations in the training set which would 
have yielded null values. The 17 classified factor maps are 
presented in Figure 4. 
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51             Amos Mafigiri et al. - International Journal of Built Environment and Sustainability 10:1 (2023) 43-60 
 

 

  

  

  

 

 

 
Figure 4 Causal factor maps used for the analysis  
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The weight of evidence method is based on Bayes theorem and 
concepts of prior and posterior probability. This approach aims 
to calculate the importance of each causal factor through a 
statistical technique, and to determine if a given set of causal 
factors could result in unstable slopes. It achieves this by 
assessing the spatial relationship between the areas affected by 
landslides, the known landslide locations, and the distribution 
of landslide related factors. The WoE method produces binary 
maps that aim to predict the presence or absence of the 
landslide event within each pixel. Each overlay of a given factor 
map layer and landslide inventory layer generates four possible 
combinations of landslide conditioning factors shown in Table 
2. 
 
Table 2 Possible combinations of a potential landslide 
conditioning factor. Note: Npix = number of pixels (Van 
Westen et al., 2003) 
 

  

  :Potential 
landslide 

conditioning 
factor 

 

  (Present) (Absent) 

S: Landslides Present Npix1 Npix2 

 Absent Npix3 Npix4 

The study then assigned a weight to each factor class through a 
calculation of log-likelihood ratios (Equations 1 and 2) (Armas, 
2012). The method allocates positive and negative weights  to 
each factor class, for example the 0-7 degree slope class in a 
classified slope raster. A high positive weight indicates that a 
given factor class is highly predictive of landslide occurrence, 
while negative weights are less predictive of landslide 
concurrence (Getachew & Meten, 2021). 
 

  

(1) 

  

  

(2) 

 
A self-developed tool was used to extract the Npix1 values 
using a cross-factor operation to determine the number of 
landslide pixels within each factor class (Figure 5).  
 
 
 
 
 

 
 

 
Figure 5 Model Builder tool for extraction of Npix1 grid cells  

 
 

Once the values of Npix 1 were determined, the remaining 
values of Npix2, Npix3, and Npix4 were derived using the 
following formulas: 
 

 (3) 

 (4) 

 (5) 

 
From here, positive weight (W+) and negative weight (W-) 
values could be derived using Equations 1 and 2. A raster 
calculator operation was carried out to apply weight values to 

each factor class within the factor map layers. With the W+ and 
W- weighted layers, contrast value (C) layers (W+ - W-) were 
then derived for each factor map. Finally, all C-weighted maps 
were added up to generate the LSI map denoted by the 
equation:  
 

 

(6) 

 
Where LSI is the landslide susceptibility index of the ith pixel 
and Ci is the contract value of the jth factor (Ilia & Tsangaratos, 
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2016). In order to create comparable LSI maps to enable 
assessment of the influence of anthropogenic factors, the final 
LSI values were categorized into five classes using a natural 
breaks classification method (Polykretis et al., 2015). The 
classes were ‘‘Very low’’, ‘‘Low’’, ‘‘Moderate’’, ‘‘High’’ and 
‘‘Very high’’. 
 
Following this classification, a set of LSI maps were prepared 
for different factor combinations including all 1) available 
factors; 2) and non-anthropogenic factors. Subsequently, map 
algebra subtraction operations were performed first to 
determine the influence of anthropogenic factors on the overall 
LSI (inclusive of all available factor maps), then through a raster 
operation, the difference that a single anthropogenic factor 
made to overall LSI.  
 
A receiver operating characteristics curve was then drawn and 
the area under curve calculated. The ROC analysis is noted to 
be a robust method for validation of landslide susceptibility 

models (Polykretis et al., 2015). The validation was carried out 
with the remaining 30% of landslide polygons. 
 
3. Results and Discussion 
 
The data analysis performed a weight of evidence calculation, 
which determined positive and negative weights as well as 
contrast values for all factor classes. These values were the basis 
of the evaluation of factor significance. According to Getachew 
and Meten (2021), positive weight values between 0.1 and 0.5 
are considered middle predictive, while values between 0.5 and 
1 are deemed moderately predictive. Values between 1 and 2 
are considered highly predictive of landslide occurrence. As 
such, the highest positive weight values were ranked in order to 
identify the most highly predictive factor classes, which might 
point to the most significant causal factors. These results are 
presented in Table 3. 
 
 

 
 

Table 3 Highest ranked factor classes by contrast value  
Causal factor Factor class W+ W- C 

Lineament density 4.49-6.26 1.152 -1.415 2.567 

Distance to lineament 0-44 0.991 -1.547 2.538 

Distance to road 147-218 1.741 -0.277 2.018 

 62-101 0.892 -0.302 1.194 

Road density 12.44-19.01 0.684 -0.515 1.199 

 19.01-28.47 0.7152 -0.3571 1.072 

Slope 38-65 1.752 -0.198 1.950 

 29-37 1.096 -0.341 1.437 

TRI 0.89-1.45 1.566 -0.259 1.825 

 1.45-3.19 1.437 -0.018 1.455 

 0.64-0.89 0.953 -0.365 1.318 

Flow direction W (16) 0.995 -0.875 1.870 

Land use/land cover Open space and recreation 0.895 -0.426 1.321 

TST 6.66-10.09 1.091 -0.104 1.195 

Aspect East 0.790 -0.346 1.136  

 
 
The results indicate strong positive correlations (W+) in factor 
classes for distance to road, lineament density, slope, TRI, and 
TST factors. Moderate to highly predictive anthropogenic 
factor classes included LULC classes (infrastructure and utilities 
and open space and recreation); distance to road (147-218m); 
road density; and distance to multi-storey buildings (81-157m). 
Medium to moderately predictive classes for non-anthropogenic 
factors included the east, northeast and southeast-facing slope 
classes for aspect; negative (-66.6 - -16.96 and -16.95 - -7.2) 
and positive (8.76 - 46.43) curvature classes (0.6843- 0.7092); 
0m-44m distance to lineament (0.9906); 37m-75m distance to 
river (0.5757); flow accumulation (12-14 and 14-25); (SW) 
flow direction (0.9946); 50-54 TS convex (0.6704); 1.72-4.08 
TWI (0.5278); and four of six VRM classes (0.4332-0.9719). 
Highly predictive classes for non-anthropogenic factors 
included highest (4.49-6.26) lineament density (1.1517); 
highest (29°-37°, 38°-65°) slope classes (1.0956 and 1.7522); 

400-1972 SPI (1.1032); highest TRI values (1.5663 and 
1.4372); 6.66-10.09 terrain surface texture (1.0914). 
 
3.1   Output for All Causal Factors 
 
The main output of the model was a set of susceptibility maps 
representing different factor combinations from which the 
influence of anthropogenic factors may be assessed. The main 
outputs included 1) a susceptibility map classified from the LSI 
of all landslide causal factors (Figure 6); and 2) a susceptibility 
map classified from the LSI of non-anthropogenic factors 
(Figure 7). The results indicate that overall, susceptibility 
within the study area is high and the highest susceptibility class 
correlates significantly with the high lineament density and TRI. 
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Figure 6 Susceptibility map derived from LSI of all landslide causal factors 

 

 
Figure 7 Susceptibility map derived from LSI of non-anthropogenic landslide causal factors  
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3.2   Influence of Anthropogenic Factors  
 
A separate raster layer was processed to help visualize the 
incremental change in susceptibility when anthropogenic factors 
are added to the non-anthropogenic dataset. The results show 
the areas where anthropogenic factors had the highest influence 
on susceptibility (Figure 8). These areas were situated in the 
“High” to “Medium” susceptibility classes in the eastern and 
western peripheries of the study area, but were outside the 
“Very high” susceptibility class in the central to southwestern 
zone. Overall, the difference in susceptibility class value for any 
given pixel ranges from -2 to 2. The zones with “High” to 

“Medium” susceptibility lie closer to residential developments 
on the eastern and western peripheries of the study area. It was 
observed that while the addition of anthropogenic factors did 
not affect “Very high” susceptibility areas, it did alter 
considerably the extent of the “High” susceptibility areas. 
However, the most significant increases in LSI were noted to 
occur within areas that overlay with the highest weighted LULC 
and distance to road classes indicating further that these were 
the most important anthropogenic factors in the overall dataset.  
 
 

 
 

 
Figure 8 Illustrating the incremental change in LSI when anthropogenic factor layers are added to the dataset  

 
 

3.3   Influence of a Single Anthropogenic Factor 
 
In this step, a subtraction was carried out to determine the 
susceptibility values for a single anthropogenic factor, which is 
distance to road. This was intended to highlight the incremental 
effect that a single anthropogenic factor can have on 
susceptibility. The results of this analysis are presented in 
Figure 9. They indicate that the addition of distance to road to 
total LSI had a marginal effect across the study area with 

susceptibility values increasing or lowering by only one class. 
The spatial extent of these shifts in susceptibility class was also 
small relative to other anthropogenic causal factors. In relation 
to the highest weighted causal factors, the values indicate a 
close spatial association with distance to road, TRI and distance 
to lineament causal factors. 
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Figure 9 Incremental change in susceptibility class following addition of the distance to road layer 

 
 

A similar function was executed for land use land cover. Both 
distance to road and land use land cover registered a change in 
susceptibility value ranging from -1 to 1. In the case of land use 
land cover, a similar pattern was observed wherein increase in 
susceptibility class due to addition of the single factor occurred 

in the “Medium” and “High” susceptibility classes. These zones 
were also located closer to residential developments (Figure 
10). In relation to the highest observed factor classes, these 
areas showed a spatial association with LULC and distance to 
lineament layers.  

 

 
Figure 10 Incremental change in susceptibility class due to addition of land use land cover 

 
 

The road cut layer registered similar results in terms of the 
range of susceptibility class differences, although the extent of 
the changes, specifically “High” and “Medium” susceptibility 
areas was noticeably larger than distance to road but smaller 
than LULC (Figure 11). The incremental effect for the road cut 

layer showed a close spatial association with highest weighted 
classes for distance to road and distance to lineament as well as 
LULC. These results appear to confirm the importance of land 
use as a significant factor in the morphology of slopes (Armas, 
2012 
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Figure 11 Incremental change in susceptibility class due to addition of road cut  

 
 

3.4   Validation of the Susceptibility Model 
 
The results indicated an AUC of 78.57% for all causal factors 
and 78.67% for non-anthropogenic factors, which was 
considered a good accuracy level (El Khouli et al., 2009) 
(Figure 12). The anthropogenic factors however, yielded an 
AUC of 57% which was a low level of accuracy by 
comparison.  
 

 
 

Figure 12 ROC curve for all landslide causal factors, 
anthropogenic factors and non-anthropogenic factors 

 
4. Conclusion and Recommendations 
 
The results indicate that while anthropogenic factors 
contribute considerably to landslide susceptibility, their 
influence on the cumulative LSI value is comparably less 
prominent than that of non-anthropogenic factors, specifically 
geological and geomorphological factors. Additionally, among 
anthropogenic causal factors, land use/land cover and distance 
to road have the biggest influence in landslide susceptibility. 
Specifically, zones in the open space and recreational area 
factor class show a strong spatial association with steeper 

slope classes (29°-65°) and higher TRI values. This might 
indicate that areas inherently prone to slope failure due to 
higher slope angles are also less built-up. These forested 
slopes constitute the zones of highest susceptibility (“High” 
and “Very high”) in the LSI map. A possible reason for high 
susceptibility within these zones - as put forward in a study by 
Hassaballa et al. (2014) - is that areas covered by forest carry 
more moisture, and thus are more prone to soil saturation. 
Conversely, impervious surfaces that characterise built-up 
areas show low soil moisture content. Distance to road classes 
62m-101m and 147m-218m were also noted to have a strong 
correlation with landslide locations. The analysis also found 
that although distance to road factor classes had the highest 
contrast value among the anthropogenic factors, the 
incremental effect of land use land cover on LSI was more 
widespread across the study area, and followed respectively 
by road cut and distance to road. The results indicate further 
that anthropogenic factors have a relatively lesser influence on 
the “Very High” susceptibility classes (undeveloped forested 
slopes that constitute 17.75% of the study area) but are more 
influential in the built-up areas. The anthropogenic factors had 
a significant effect on the spatial extent of areas in the “High” 
susceptibility class (22.1% of the study area). The most 
significant increases in LSI were noted to occur within areas 
that overlay with the highest weighted land use/land cover 
and distance to road classes indicating further that these were 
the most important anthropogenic factors in the overall 
dataset. An examination of the influence of each 
anthropogenic factor showed that land use/land cover had the 
largest incremental effect on landslide susceptibility across the 
study area, thus underpinning its significance in the 
morphology of slopes (Armas, 2012). 
 
The limitations of the research relate primarily to the 
constraints of the model, and the number of anthropogenic 
factors used for the study. The limitations of the model are 
that first, it considers only the spatial distribution of landslide 
occurrence, thereby omitting information about the 



58             Amos Mafigiri et al. - International Journal of Built Environment and Sustainability 10:1 (2023) 43-60 
 

 

historicity of terrain units in relation to multiple landslide 
events (Corominas et al., 2013). Studies on the spatial-
temporal distribution of landslides are one way to remedy this 
issue, and have been highlighted as a knowledge gap and 
opportunity for new research (Akter et al., 2019). Owing to 
constraints in the availability of data, this study excluded an 
in-depth look into other environmental factors such as 
vegetation and soil characteristics, which also bear 
significantly on slope stability. Specifically, vegetation cover 
has a strong influence on soil moisture, saturation and 
ultimately ground water level, all of which have an impact on 
slope stability, and are particularly relevant in the context of a 
rapidly developing urban landscape. Similarly, lithological 
characteristics were left out of the analysis due to the lack of 
spatial variance within the study area (only one lithological 
unit). This, however, limited the consideration of weathering 
and associated processes as a conditioning factor of landslide 
occurrence.  
 
The study sheds light on the influence of anthropogenic 
landslide conditioning factors at larger scales within densely 
populated hillside settlements. It indicates that while the 
overall influence of human-related factors is peripheral in 
comparison to geological and geomorphological factors, the 
effect of infrastructure, particularly roads, is significant. 
Additionally, the study further highlights the significance of 
infrastructure development activities particularly road 
development on slope stability, and reinforces the principle 
that any activities or processes affecting the natural 
morphology of slopes will increase an area’s proneness to 
landsliding. The study also indicates that anthropogenic 
factors could indirectly affect landslide susceptibility in the 
neighborhood of built-up urban spaces. It indicates that where 
impervious surfaces in built-up areas surround steep forested 
slopes, increases in soil moisture from the accumulation of 
runoff could increase landslide susceptibility on such slopes. 
Anthropogenic causal factors are also observed to have a more 
extensive effect on landslide susceptibility in built up areas, 
particularly land use land cover.  
 
This study recommends that future research conducts a more 
in-depth analysis of anthropogenic factors, with a specific 
emphasis on non-conventional factors, for example building 
characteristics such as building type. Similarly, conventional 
factors such as roads may be expanded upon to include a 
classification of roads by attributes like pavement type, width 
and drainage among others. 
Subsequent studies may also investigate the influence of these 
and other anthropogenic factors using a spatial-temporal 
approach in order to investigate links between the temporal 
distribution of landslide incidents and anthropogenic 
pressures. On the other hand, the spatial approach may be 
enhanced by a consideration of landslide activity attributes, 
which is to say, a similar spatial approach may divide the 
landslide inventory data into several input datasets categorized 
as dormant, active or potentially reactivated landslides. 
Further works should also consider different susceptibility 
scenarios based on landslide type, as these are driven by a 
unique set of causal factors (Van Westen et al., 2003).  
 
The present study is important in the context of 
infrastructural development in the Kuala Lumpur peri-urban 
areas as it highlights the importance of road corridors and 

their influence on slope stability within landslide-prone 
regions. It also emphasizes the need for better approaches to 
protect steep, potentially unstable slopes from surface runoff. 
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