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ABSTRACT 

 
Rapid population growth and urbanization, coupled with technological advancements, 
have driven higher electricity demand, predominantly sourced from contributors to 
climate change. This article introduces a novel artificial intelligence (AI) time-series 
algorithm, a simple stacked ensemble of simple linear regression (SLR) and Support 
Vector Regression (SVR), designed to forecast Malaysia’s annual electricity 
consumption, particularly in scenarios with limited datasets utilizing the Cross Industry 
Standard Process for Data Mining (CRISP-DM) data science methodology. Analysis 
revealed that this simple stacked ensemble SVR-based time-series algorithm, 
employing an ε -insensitive loss function with a third-degree polynomial kernel, 
outperformed 71 other SVR-based algorithms, including four time-series algorithms 
from the previous study. The algorithm’s forecasting insights from the formulated 
algorithm could guide policymakers in establishing more effective regulations aligned 
with Sustainable Development Goals (SDGs) such as affordable and clean energy 
(SDG7), decent work and economic growth (SDG8), industry, innovation and 
infrastructure (SDG9), sustainable cities and communities (SDG11), responsible 
consumption and production (SDG12), and climate action (SDG13), which benefit 
economic, environmental, human, and social. 
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1.  Introduction 
 
Energy plays a substantial role in socio-economic development 
worldwide. This is due to energy being a predominant component 

of the Sustainable Development Goals (SDGs), composed of four 
principal pillars such as economic, environmental, human, and 
social (Tan et al., 2013). According to the International Energy 
Agency’s 2007 World Energy Outlook, the global energy 
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consumption demand was projected to grow by 55% between 
2005 and 2030 (Khanna & Rao, 2009). Based on this projection, it 
was expected that three-fourths of the demand for global energy 
consumption would rise in developing countries, including 
Malaysia. The principal root causes of the rapid growth of 
electricity consumption in Malaysia are due to rapid population 
growth, expansion of living quarters, and technological 
advancements. Specifically, Figure 1 summarizes the annual 
electricity generation and consumption for 1978-2021 in 
Malaysia, conveying that total electricity consumption has 
experienced rapid compounded growth over the years.  
 
In light of the pressing climate change issue and the need for 
environmental sustainability, the global energy landscape is 

shifting toward cleaner and more sustainable energy resources. 
The transition to clean and renewable energy, such as biomass, 
geothermal, hydropower, and wind, has gained global attention as 
an essential step toward reducing greenhouse gas emissions and 
mitigating environmental impacts (Solaun & Cerdá, 2019). This is 
because embracing clean energy solutions offers a path to combat 
climate change, fosters socio-economic development, and ensures 
energy security for future generations. Consequently, formulating 
an AI time-series algorithm for forecasting annual electricity 
consumption is much needed to support informed decision-
making for clean energy transition, socio-economic progress, 
energy conservation, and environmental protection. 
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Figure 1. Electricity generation and consumption trends in Malaysia (1978-2021) (Energy Commission, 2024) 
 
 

 
From the perspective of statistical machine learning, time-series 
algorithms formulated in previous studies can generally be 
categorized into three different approaches such as conventional 
time-series algorithms (Guo et al., 2020; He et al., 2016; Hong et 
al., 2013; Jifri et al., 2017; Kamisan et al., 2018; Kandananond, 
2011; Lee & Ko, 2011; Massaoudi et al., 2021; Miswan et al., 
2016a, 2016b; Muneer et al., 2022; Ping & Kamarudin, 2022; 
Razak et al., 2009; Sulandari et al., 2022), AI time-series 
algorithms (Abad et al., 2020; Chong et al., 2017; Guo et al., 
2020; He et al., 2016; Her et al., 2022; Jifri et al., 2017; Kamisan 
et al., 2018; Kandananond, 2011; Lee & Ko, 2011; Massaoudi et 
al., 2021; Miswan et al., 2016a; Muneer et al., 2022; Nagi et al., 
2011; Shapi et al., 2021; Sulandari et al., 2022) and hybrid AI 
time-series algorithms (Abad et al., 2020; Guo et al., 2020; He et 
al., 2016; Kamisan et al., 2018; Lee & Ko, 2011; Massaoudi et al., 
2021; Miswan et al., 2016a; Nagi et al., 2011; Razak et al., 2009; 
Sulandari et al., 2022). In literature, conventional time-series 
algorithms, such as Autoregressive Integrated Moving Average-
based (ARIMA-based) and multiple linear regression-based (MLR-
based), have been extensively applied worldwide for short-term 
electricity consumption forecasting. These applications span 

various countries, including the Republic of Poland (Khanna & 
Rao, 2009), China (Guo et al., 2020; He et al., 2016; Hong et al., 
2013), Canada (He et al., 2016), Singapore (He et al., 2016), 
Malaysia (Razak et al., 2009; Miswan et al., 2016a, 2016b; Jifri et 
al., 2017; Kamisan et al., 2018; Massaoudi et al., 2021; Muneer et 
al., 2022; Ping & Kamarudin, 2022; Sulandari et al., 2022), 
Thailand (Kandananond, 2011), Taiwan (Lee & Ko, 2011), the 
United of America (USA) (Massaoudi et al., 2021), and Indonesia 
(Sulandari et al., 2022). 
 
However, ARIMA-based and MLR-based time-series algorithms 
have notable limitations. These algorithms require extensive time-
series datasets, especially when utilizing the maximum likelihood 
estimation (MLE) method. They are primarily suitable for linear 
association environments and may not effectively capture complex 
non-linear associations. Additionally, the conventional time-series 
algorithms, such as the ARIMA-based and MLR-based time-series 
algorithms are essential to satisfy certain assumptions. Specifically, 
the residuals are required to fulfill the stationary univariate 
process and have an independent and identically Gaussian 
distribution with mean zero and constant variance.  
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Moreover, analysis results from worldwide literature revealed 
that AI and hybrid AI time-series algorithms outperformed 
conventional time-series algorithms in predicting electricity 
consumption, including Malaysia (Jifri et al., 2017; Kamisan et al., 
2018; Massaoudi et al., 2021; Miswan et al., 2016b; Sulandari et 
al., 2022). For instance, Jifri et al. (2017) proposed utilizing a 
multivariable regression-based AI time-series algorithm to predict 
the electricity load demand in Johor state, Malaysia. Their analysis 
results revealed that the proposed regression-based AI time-series 
algorithm outperformed conventional time-series algorithms such 
as exponential smoothing (ES), univariate Box-Jenkins (UBJ), 
autoregressive autoregressive (ARAR), Errors, Trends, and 
Seasonal (ETS) algorithms.  
 
Meanwhile, Kamisan et al. (2018) proposed a hybrid AI time-
series algorithm that integrated multivariable linear regression 
(MLR) and ANN in predicting the electricity load, principally 
focusing on the commercial area of Johor State, Malaysia. To 
authenticate the effectiveness, this study compared the 
performance of the proposed hybrid AI time-series algorithm with 
the MLR and ANN time-series algorithms. The analysis results of 
this study also revealed that the proposed hybrid AI time-series 
algorithm outperformed the MLR and ANN time-series 
algorithms on average. 
 
Furthermore, Muneer et al. (2022) proposed utilizing the long 
short-term memory (LSTM) time-series algorithm to predict the 
load consumption of the residential sector. The analysis also 
revealed that LSTM outperformed conventional time-series 
algorithms such as ES and UBJ. Meanwhile, Sulandari et al. (2022) 
proposed hybridizing the clustering-based bootstrap aggregation 
time-series algorithms in predicting electricity load, primarily 
focusing on Malaysia, the Republic of Poland, and Indonesia. 
Specifically, this article proposed to hybridize the bootstrap 
aggregation respectively with conventional time-series algorithms 
such as Seasonal UBJ, neural network autoregression (NNAR), 
trigonometric seasonality, Box-Cox transformation, ARMA 
errors, Trend, and Seasonal components (TBATS), and Double-
Seasonal Holt-Winters (DSHW) time-series algorithms. The 
analysis results from this study showed that the number of 
bootstrap series does not affect the forecasting accuracy. 
Contrarily, the analysis results in this study revealed that the 
forecasting accuracy merely improved when the hybridization of 
the bootstrap aggregation with the appropriate aforementioned 
conventional time-series algorithms was utilized. 
 
Nevertheless, several recent studies merely focus on effectively 
comparing of AI and hybrid AI time-series algorithms in 
predicting the electricity load in Malaysia. For instance, Chong et 
al. (2017) proposed to utilize ε -Support Vector Regression ( ε -
SVR) for load prediction. In this study, the researchers also 
compared the effectiveness corresponding to the kernel function 
of SVR such as linear, polynomial, radial basis function (RBF), and 
sigmoid. Their analysis results revealed that ε -SVR with a linear 
kernel function outperformed SVR with 2-degree polynomial, 
RBF, and sigmoid kernel functions, as well as Bayes-regularization 
ANN time-series algorithms. Shapi et al. (2021) studied the 
effectiveness of comparing of three different cloud-based AI time-
series algorithms in predicting the energy consumption of smart 
commercialized buildings. This article has compared the 

predictive performance of three different AI time-series 
algorithms such as ANN, k-Nearest Neighbours (kNN), and ɛ-
SVR utilizing the RBF kernel function. The principal analysis 
results of this research revealed that ε -SVR time-series 
algorithms outperformed ANN and kNN. In contrast, Her et al. 
(2022) proposed employing the ANN to forecast the short-term 
electricity load demand. This study compared and evaluated the 
superiority of four non-linear activation functions of the hidden 
layer such as exponential, sigmoid, softsign, and tanh in predicting 
the electricity load demand. The analysis results of this study 
revealed that the tanh activation function of the hidden layers 
outperformed other activation functions. 
 
On the other hand, Nagi et al. (2011) proposed a novel hybrid of 
self-organizing map (SOM) and ε -SVR (SOM- ε -SVR) time-
series algorithm in predicting the electricity load, focusing on the 
electricity load dataset of EUNITE Competition 2001, Peninsular 
Malaysia, and the USA with taking into account the external 
determinants such as peak load, temperature, type of day, and 
annual holidays. The analysis results revealed that the proposed 
hybrid AI time-series algorithm outperformed ε -SVR, 
Backpropagation Neural Network (BPNN) time-series algorithms, 
and also a series of regression-based, SVR-based, and ANN-based 
time-series algorithms in the literature periods 2005-2009. 
 
Moreover, Massaoudi et al. (2021) proposed another novel 
advanced hybrid AI time-series algorithm for predicting the load 
demand principally focusing on Malaysia and the USA. In 
particular, the proposed hybrid AI time-series algorithm stacked 
three different AI algorithms such as extreme gradient boosting 
machine (XGB), light gradient boosting machine (LGBM), and 
multilayer perceptron (MLP) (Stacked XGB-LGBM-MLP). The 
simulation results of this study revealed that the proposed stacked 
AI time-series algorithm outperformed 11 comparison benchmark 
AI time-series algorithms, which were based on forecasting 24 
hours ahead. Specifically, the comparison benchmarks of the AI 
time-series algorithm employed in this study include hybrid 
Convolutional Neural Networks Fuzzy Time-Series (FTS-CNN), 
Seasonal UBJ, Probabilistic Weighted Fuzzy Time-Series 
(PWFTS), Weighted Fuzzy Time-Series (WFTS), Integrated 
Weighted Fuzzy Time-Series (IWFTS), LSTM, Random Forest 
(RF), kNN, XGB, LGBM and MLP. 
 
The principal limitations of the AI time-series algorithm, such as 
ANN-based including the LSTM, MLP-based, and SOM-based are 
these algorithms require high computational cost, the need for a 
physically interpretable determination of the optimal number of 
neurons, hidden layers, and appropriate activation function, and 
required a very large sample size to result in a reliable and 
accurate prediction (Farsi et al., 2021). However, Malaysia’s 
annual electricity consumption data is limited and characterized 
by a small sample size ( )50 .<  Despite the previous studies (Chong 
et al., 2017; Shapi et al., 2021) revealing that the SVR-based time-
series algorithm performed well in predicting Malaysia’s annual 
electricity consumption data. However, the SVR-based time-
series algorithm is unsuitable for forecasting future short-term 
electricity consumption. Furthermore, the appropriateness of the 
kernel function applied in the SVR-based time-series algorithm is 
highly dependent on the inherent characteristics of the load 
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consumption dataset, which inherently vary globally due to the 
differences of the electricity grid and are not comprehensively 
investigated in the Malaysia dataset, including the research carried 
out by Chong et al. (2017), and Shapi et al. (2021). 
 
To address these issues, the principal objective of this article is to 
formulate a novel simple stacked ensemble AI time-series 
algorithm for forecasting annual electricity consumption in 
Malaysia utilizing a limited dataset. Specifically, this study aims to 
carry out a mathematical analysis by comprehensively comparing 
the effectiveness of the hybrid of simple linear regression (SLR) 
and various well-known kernel functions utilizing ε -insensitive 
and ν -insensitive loss functions of simple stacked ensemble SVR-
based time-series algorithms. The kernel functions taken into 
account in this study include linear ( )LK ,η  polynomial ( )PK ,η  
with a maximum attainable degree of six, RBF ( )RK ,η  and 
sigmoid ( )SK ,η  Kernel functions. The maximum attainable value 
for the kernel function parameter ( )∆  is five for the ( )PKη  and 

( )SK ,η  respectively. To pursue the principal objective of this 
study, the rest of this article is organized as follows: Section 2 
provides a brief overview of the schematic methodology of the ε -
SVR, ν -SVR, kernel functions, and goodness-of-fit (GoF) 
statistics. Section 3 presents the results of analysis and the 
corresponding discussion. Finally, the concluding remarks are 
given in Section 4. 
 
2. Data Science Methodology 
 
This section provides an overview of the schematic methodology 
of the formulated novel simple stacked ensemble SVR-based time-
series algorithm, associated with its theoretical backgrounds. 
Fundamentally, the schematic method of the formulated simple 
stacked ensemble SVR-based time-series algorithm is developed 
based on the Cross Industry Standard Process for Data Mining 
(CRISP-DM) data science methodology, as depicted in Figure 2. 
The data science methodology presented in Figure 2 is tailored to 
this research. The CRISP-DM data science methodology was 

selected for this study primarily due to its flexibility and effective 
application across various studies (Solano et al., 2022; Brzozowska 
et al., 2023; Chuan et al., 2024; Liang et al., 2024; Chuan et al., 
in press). 
 
2.1   Business Understanding and Data 

Understanding 
 
The first two predominant phases in the CRISP-DM data science 
methodology are business and data understanding. The primary 
focus of business understanding is to comprehend the principal 
objective of the project and its requirements. Meanwhile, the 
second phase, data understanding, builds upon the foundation of 
business understanding. The primary focus of this phase is to 
profile the acquired annual electricity consumption time-series 
dataset. Specifically, the principal objective of data mining in this 
article is to formulate a novel simple stacked ensemble SVR-based 
time-series algorithm for predicting the annual electricity 
consumption in Malaysia from 1978 to 2021. The formulated 
simple stacked ensemble SVR-based time-series algorithm in this 
study does not rely on any statistical assumption, unlike 
conventional time-series algorithms. As the time-series dataset 
involved in this study is a univariate secondary dataset from the 
Energy Commission of Malaysia, Microsoft Excel and an open-
source R statistical software is utilized to carry out the statistical 
analysis; therefore, there is no financial cost imposed. 
 
Meanwhile, the insightful predictive results from the formulated 
simple stacked ensemble SVR-based time-series algorithm could 
primarily benefit policymakers in establishing more effective 
regulations and actions in the energy sector. This, in turn, would 
aid in effective decision-making for socio-economic development, 
energy saving, and environmental protection. On the other hand, 
the acquired dataset is profiled utilizing appropriate univariate 
graphical and non-graphical exploratory data analysis tools, such 
as Boxplot and the first four statistical L-moments. 
 

 

 
Figure 2. Stacked ensemble SVR-based time-series algorithms with CRISP-DM data science methodology 
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2.2   Data Preparation 
 
The data preparation phase generally focuses on preparing and 
cleaning the acquired dataset, including tasks such as imputing 
missing values, outlier identification and correction, data 
integration, and data formatting. Owing to the acquired univariate 
time-series dataset from the official website of the Energy 
Commission of Malaysia being a complete dataset without missing 
values, the imputation of missing values and data integration is not 
required in this study. Furthermore, outlier identification and 
correction are not performed in this article. This is due to the 
principal objective of this study, which is to formulate a novel 
simple stacked ensemble SVR-based time-series algorithm for 
predicting the compound growth non-linear characteristics of 
annual electricity consumption in Malaysia as depicted in Figure 1. 
Contrarily, the acquired time-series dataset is formatted by 
splitting it into training and test sets (hold-out cross-validation) 
with a 60:40 ratio selected based on the optimum ratio among 
60:40, 70:30, 80:20 and 90:10. Specifically, the optimum ratio of 
60:40 for training and test sets in this article is comprehensively 
selected based on the minimum absolute error of the average 
between the GoF statistics for the training and test sets. As a 
result, selecting the optimum ratio of the training and test sets 
imposed in this study allowed for minimizing the risk of 
overfitting. 
 
2.3   Modeling 
 
The principal objective of the modeling phase in the CRISP-DM 
data science methodology is to build and assess trained AI 
algorithms, which is consistent with the principal purpose of this 
article. In particular, the principal aim of this article is to 
formulate a novel simple stacked ensemble SVR-based time-series 
algorithm trained utilizing the split training set, which includes 
both simple stacked ensemble ε -SVR-based and ν -SVR-based 
time-series algorithms. This study also aims to comprehensively 
investigate the superiority of various kernel functions and the 
parameters of the kernel functions applied in the formulated 
simple stacked ensemble SVR-based time-series algorithms for 
effectively forecasting the compound growth non-linear 
characteristics of electricity consumption. Consequently, a brief 
overview of the theoretical backgrounds of ε -insensitive and ν -
insensitive loss functions of SVR, the kernel functions, and the 
GoF statistics are also presented in this sub-section. 
 
2.3.1 Support Vector Regression Time-Series
 Algorithms 
 
Support vector machines (SVM) are widely recognized as 
powerful supervised AI algorithm that can be utilized for both 
classification and regression tasks. SVM is particularly well-suited 
for small sample sizes or limited dataset environments. Since this 
section limits the discussion to the regression task, the SVR will 
be utilized instead of SVM. The stem of this preliminary study has 
been motivated to carry out a comprehensive mathematical 
analysis of the SVR-based time-series algorithm study owing to its 
effectiveness highlighted in Malaysia’s literature (Chong et al., 
2017; Nagi et al., 2011; Shapi et al., 2021). However, these 
studies do not discuss the effectiveness of ν -SVR time-series 
algorithms. Consequently, this study desired to bridge this gap by 

providing a comprehensive mathematical analysis to compare the 
effectiveness of various kernel functions utilized in ε -insensitive 
and ν -insensitive loss functions and the corresponding parameters 
of the kernel functions for SVR are utilized to predict the annual 
electricity consumption in Malaysia utilizing a limited dataset. 
 
Suppose that ( ) ( )( ), 1, 2, ,X Yobs obsk k k n= K  is a set of data points, 
such that .X d

obs ∈ ¡  Fundamentally, the concept of SVR is to map 
the nonlinearly Yobs  into high-dimension feature space, ,ξ  
utilizing a nonlinear mapping, ,η  which can be denoted as Eq. 
(2.1). 
 

( ) ( ) ( )( )* *, , ,, X X η X Xk k obs k k obsf δ δ δ δ λ= − +∑  (2.1) 

 
where 0kδ ≥  and * 0kδ ≥  are unknown coefficients, and the kernel 
function, ( ) ( ) ( ),η X X X Xobs obsς ς= ⋅  represents the inner product 
of two vectors, Xobs  and ,X  in the features space, which 

( ) ( )*, ,η η Xd
k k obsξ δ δ ξ∈ → − ∈∑¡  and λ  represents the support 

vector (SV) bias. In mathematics, the unknown coefficients of ,kδ  
*,kδ  and λ  for the ε -SVR and ν -SVR regression in Eq. (2.1) is 

attainable by minimizing the regularized ε -insensitive and ν -
insensitive loss function in Eqs. (2.2)-(2.3), respectively. 
 

( ) ( )( )( )21 * 1 *min 2 k k k kC nδ δ δ δ− −− + −∑ ∑  (2.2) 

( ) ( )( ){ }21 * 1 *min 2 k k k kC nδ δ νε δ δ− −− + + −∑ ∑  (2.3) 

 
where 0,ε ≥ 0 1,ν≤ ≤  and C  represents the regularized 
parameter, which is the well-recognized default value of 0.1ε =  is 
employed in this article. The root motivation of 0.1ε =  is 
employed due to its ability to balance exploration and exploitation 
in various applications (He, 2018; Rätz et al., 2019). From the 
mathematical theoretical perspective, the primary difference 
between simple stacked ensemble ε -SVR-based and ν -SVR-
based time-series algorithms is the ,ν  the parameter in Eq. (2.3) 
allowed the simple stacked ensemble ν -SVR time-series 
algorithm to control the number of SVs available in the resulting 
algorithm, while vice versa for the simple stacked ensemble ε -
SVR-based time-series algorithm. As a result, the simple stacked 
ensemble ν -SVR time-series algorithm imposed less 
computational complexity than the simple stacked ensemble ε -
SVR time-series algorithm. 
 
2.3.2 Kernel Functions and Goodness-of-Fits Statistics 
 
In SVR, kernel functions are utilized to train and predict the AI 
algorithm. Based on the literature (Chong et al., 2017; Nagi et al., 
2011; Rohmah et al., 2021), there are four well-known kernel 
functions utilized in SVR, such as linear kernel ( )LK ,η  polynomial 
kernel ( )PK ,η  RBF kernel ( )RK ,η  and sigmoid kernel ( )SK .η  
Mathematically, these four well-known kernel functions of SVR, 
which are employed in this article can be expressed as Eqs. (2.4)-
(2.7), respectively. 
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( ) '
LK ,η X X X Xobs obs=  (2.4) 

( ) ( )1 '
PK ,η X X X Xobs obsd

γ−= + ∆  (2.5) 

( ) ( )21
RK , expη X X X Xobs obsd −= − −  (2.6) 

( ) ( )( )1 '
SK , tanhη X X X Xobs obsd −= + ∆  (2.7) 

 
where Xobs  is a vector of the years, ∆  is the parameter of the 
kernel function, γ  is the degree of polynomials, and ( )tanh ⋅  
represents the hyperbolic tangent function. Mathematically, the 
∆  in PKη  and SKη  allows for adjusting the independent term in 
the kernel function, creating non-symmetric kernel functions. 
Particularly, the effectiveness comparison of ∆  ranging from 0 to 
3 is employed in PK ,η  and ∆  ranging from 0 to 5 is employed in 

SK ,η  respectively. Moreover, the effectiveness comparison of γ  
ranging from 0 to 6 is also presented in this article. 
 
Due to the difficulty in identifying the well-suited kernel function 
that is best suited for the time-series dataset acquired in this study, 
an effective comparison of these kernel functions is carried out. 
This comparison utilizes internal validation based on the training 
set and selected GoF statistics, including root mean square error 
(RMSE), mean absolute error (MAE), and mean absolute 
percentage error (MAPE). In mathematics, RMSE ( )1 ,A  MAE 
( )2 ,A  and MAPE ( )3A  can be expressed as Eqs. (2.8)-(2.10), 
respectively. 
 

( ) ( )( )( )0.52
1

1 Y Yobs predA n vec vec−= −∑  (2.8) 

( ) ( )1
2 Y Yobs predA n vec vec−= −∑  (2.9) 

( ) ( )( ) ( )1
3 100 Y Y Yobs pred obsA n vec vec vec−= −∑  (2.10) 

 
where ( )vec ⋅  represents the vectorization. 
 
2.4   Evaluation and Deployment 
 
In the context of the CRISP-DM data science methodology, the 
principal focus of the evaluation phase is to assess the superiority 
of the trained AI time-series algorithms utilizing the test set and 
GoF statistics in Eqs. (2.8)-(2.10). To identify the best-
performing simple stacked ensemble SVR-based time-series 
algorithm, this article proposes ranking the superiority based on 
three criteria, including the average of GoF statistics respectively 
acquired from the training and test sets and the absolute error of 
the average of GoF statistics between the training and test sets. 
This article desires to highlight that the multi-criteria decision-
making (MCDM) method, including the Technique for Order of 
Preference by Similarity to Ideal Solution-based (TOPSIS-based) 
(Chuan et al., 2018) and VIseKriterijuska Optimizacija I 
Komoromisno Resenje-based (VIKOR-based) (Chuan et al., 2020) 
method are not taken into account in this article due to the 
irrationality of the analysis results acquired from these MCDM 
method. Specifically, the simple stacked ensemble SVR-based 

time-series algorithms with high GoF statistics are ranked as the 
superior AI time-series algorithm. In contrast, those with low 
GoF statistics are ranked lower. 
 
Meanwhile, the principal focus of the deployment phase is to 
deploy the proposed superior AI time-series algorithm in 
forecasting the α -step ahead annual electricity consumption, 
which insightful predictive results may principally beneficial for 
the policymakers to establish more effective regulations, and take 
more effective actions for the energy sector that can be beneficial 
to economic, environmental, human, and social, which are the 
principal pillars of the Sustainable Development Goals (SDGs). 
 
3. Analysis Results and Discussions 
 
In this article, all the statistical analyses were entirely carried out 
utilizing R statistical software, described in the business 
understanding phase. In particular, Figure 3 and Table 1 
respectively depict the graphical and numerical summary of 
annual electricity consumption in Malaysia from 1978 to 2020, 
corresponding to the economic activity sectors. These economic 
activity sectors include industrial ( )1 ,S  commercial ( )2 ,S  
residential ( )3 ,S  agriculture ( )4 ,S  and transport ( )5 .S  The time-
series utilized to train the proposed simple stacked ensemble 
SVR-based time-series algorithm in this study aggregated the 
annual electricity consumptions from 1,S  2,S  3,S  4S  and 5.S  
Figure 3 and Table 1 revealed that the 1S  economic activity sector 
has the highest electricity consumption on average, and conversely 
for the 5S  economic activity sector. In Malaysia, the industrial 
economic sector, such as manufacturing, is the main contributor 
to Malaysia’s economic growth, accounting for 9.5% of the Gross 
Domestic Product (GDP) in 2021, which decreased to -2.7% in 
2020 (Department of Statistics Malaysia, 2022). This analysis 
result leads to the highest demand for electricity consumption in 

1S  to sustain industrial operations due to the high demand for 
industrial products (Ministry of Finance Malaysia, 2023), while 
the demand for electricity in 2,S  3,S  4S  and 5S  is lower. In 
contrast, most of the vehicles utilized in Malaysia consumed 
petrol vehicles (PV) instead of electrical vehicles (EV) due to the 
market price of EVs being much higher than PV and various 
obstacles such as battery capacity, charging station availability, and 
limited traveling distance (Muzir et al., 2022; Yean, 2022). The 
lowest electricity consumption in 5S  can be attributed based on 
the total number of PVs sold, which is much higher than EVs, 
especially for Perodua Myvi (Yean, 2022). Consequently, the 
transport economic activity sector had the lowest average 
electricity consumption. However, the transport economic 
activity sector is one of Malaysia’s leading contributors to CO2 
emissions, given that transport is a fundamental and essential 
infrastructure for economic development (Solaymani, 2022). 
 
On the other hand, Figure 3 reveals that 3S  and 1S  respectively 
have the highest and lowest variability in terms of electricity 
consumption. However, this analysis result provided an inaccurate 
representation due to the high variation among the central 
measurements of 1 5.S S−  Consequently, the L-Coefficient of 
Variation (L-CV) (Table 1) has been utilized to describe the 
variation corresponding to the economic activity sectors 
considered in this study. Specifically, Table 1 depicts that 4S  and 
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2S  respectively have the highest and lowest relative variation in 
electricity consumption. These variations arise due to the 
dependency on usage demand in various economic activity sectors 
and socioeconomic growth (Pei et al., 2016).  
 
Meanwhile, Figure 3 also revealed that the shape of the 
distribution for all acquired time-series datasets is positively 
skewed, which conflicts subjectively with the analysis results of L-
skewness and L-kurtosis presented in Table 1. This discrepancy 

arises due to the fact that all the results of the analysis of L-
skewness and L-kurtosis are closer to zero. To address this 
conflict, the Shapiro-Wilk statistical hypothesis test has been 
employed, revealing that none of the acquired time-series datasets 
are normally distributed, including the annual electricity time-
series data (total). However, the non-normality of the acquired 
time-series datasets does not affect the formulation of the 
proposed simple stacked ensemble SVR-based time-series 
algorithms in this article. 

 

 
Figure 3. Exploring electricity consumption: Boxplot summaries by economic activity sectors 

 
 

Table 1. Exploring electricity consumption: first four L-moments summaries by economic activity sectors 

Economic Activity 
Numerical summary (ktoe) Shapiro-Wilk 

(p-value) L-mean L-CV L-skewness L-kurtosis 

1S  2769.1591 0.4255 0.1427 -0.0090 0.0020 

2S  1787.1136 0.4069 0.1617 -0.0647 0.0003 

3S  1128.7955 0.5120 0.1563 -0.0340 0.0012 

4S      13.0682 0.7482 0.5072  0.0967 0.0000 

5S        9.6591 0.6857 0.4208  0.0606 0.0000 
Total 5707.7955 0.4366 0.1514 -0.0401 0.0010 

 
 

Table 2. Prediction performance of simple stacked ensemble ε -SVR and ν -SVR time-series algorithms for electricity consumption 
utilizing hold-out cross-validation 

Algorithm 
Insensitive 
Loss 
Function 

Kernel 
Training Test 

Rank 
      

1 -SVR Linear   591.0884   511.1750   36.7663     2640.0560 2397.9111   21.6525 15 

2 -SVR Polynomial00 2111.9294 1667.3889   76.6441     8780.9444 8485.0294   80.2194 47 

3 -SVR Polynomial01 2111.9294 1667.3889   76.6441     8780.9444 8485.0294   80.2194 47 

4 -SVR Polynomial02 2111.9294 1667.3889   76.6441     8780.9444 8485.0294   80.2194 47 

5 -SVR Polynomial03 2111.9294 1667.3889   76.6441     8780.9444 8485.0294   80.2194 47 
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Algorithm 
Insensitive 
Loss 
Function 

Kernel 
Training Test 

Rank 
      

6 -SVR Polynomial10   591.0884   511.1750   36.7663    2640.0560 2397.9111   21.6525 15 

7 -SVR Polynomial11   591.0885   511.1749   36.7663    2640.0555 2397.9105   21.6525 12 

8 -SVR Polynomial12   591.0885   511.1749   36.7663    2640.0558 2397.9108   21.6525 13 

9 -SVR Polynomial13   591.0885   511.1749   36.7663    2640.0558 2397.9108   21.6525 13 

10 -SVR Polynomial20 2111.9294 1667.3889   76.6441    8780.9444 8485.0294   80.2194 47 

11 -SVR Polynomial21   217.1114   172.8019   11.5263    1979.1126 1686.5619   15.0757 11 

12 -SVR Polynomial22   217.1162   172.7977   11.5246     1978.0538 1685.5748   15.0667 9 

13 -SVR Polynomial23   217.0537   172.6915   11.5050     1978.6242 1685.9581   15.0695 10 

14 -SVR Polynomial30 1029.0344   896.0925   66.7161   21152.3693 16796.5460 142.3327 61 

15 -SVR Polynomial31   187.3186   145.9430   10.0355       525.5437 453.0548     4.6980 6 

16 -SVR Polynomial32   187.4254   146.4372   10.1270       505.4873 441.5153     4.5874 4 

17 -SVR Polynomial33   187.4141   146.4299   10.1256       505.7985 441.6708     4.5887 5 

18 -SVR Polynomial40 2111.9294 1667.3889   76.6441     8780.9444 8485.0294   80.2194 47 

19 -SVR Polynomial41   155.1138   132.7465     9.2822   20830.1119 15505.8065 127.8584 62 

20 -SVR Polynomial42   154.9608   132.5594     9.2582   20837.5412 15511.0810 127.9011 63 

21 -SVR Polynomial43   155.1933   132.8801     9.2913   20857.5503 15526.1261 128.0261 64 

22 -SVR Polynomial50 1300.9035 1130.1258   72.6544 118587.7846 84547.5708 689.8737 71 

23 -SVR Polynomial51   144.6513   123.6100     8.8444     4242.8651 3704.4560   33.1435 28 

24 -SVR Polynomial52   144.6396   123.5543     8.8350     4299.0482 3754.8410   33.5529 30 

25 -SVR Polynomial53   144.5739   123.4804     8.8336     4267.1875 3726.3429   33.3201 29 

26 -SVR Polynomial60 2111.9294 1667.3889   76.6441     8780.9444 8485.0294 80.2194 47 

27 -SVR Polynomial61 152.3023   134.0926     9.8875   72628.2640 44766.7664 351.1898 67 

28 -SVR Polynomial62 147.1339   126.5195     8.7871   56588.4324 34616.0963 271.0826 65 

29 -SVR Polynomial63 147.1142   126.4821     8.7873   56822.6782 34770.6001 272.3103 66 

30 -SVR Radial Basis 174.8601   143.6850     9.1589     7113.0083 6283.7111   55.5757 46 

31 -SVR Sigmoid0 2139.8140 1799.8970  
105.3810 

  13241.0080 12661.3057 118.4837 56 

32 -SVR Sigmoid1 5114.1474 4547.4612 281.2719     8876.3756 8851.4261 87.5944 31 

33 -SVR Sigmoid2 4638.9704 3792.7226 252.7749   15337.4716 15282.7544 151.3223 57 

34 -SVR Sigmoid3 2012.1558 1609.9946   84.4725     8143.6855 8038.5693 80.9168 43 

35 -SVR Sigmoid4 1873.3513 1460.2094   60.6649     4467.0280 3738.4668 35.0662 26 

36 -SVR Sigmoid5 2077.6942 1638.7820   74.4339     4828.2902 4478.1790 47.5062 27 

37 -SVR Linear   591.4326   514.3722   36.4659     2714.7401 2475.1795 22.4048 19 

38 -SVR Polynomial00 1974.0579 1766.9259 113.6069     7980.3367 7653.5294 71.8555 37 

39 -SVR Polynomial01 1974.0579 1766.9259 113.6069     7980.3367 7653.5294 71.8555 37 

40 -SVR Polynomial02 1974.0579 1766.9259 113.6069     7980.3367 7653.5294 71.8555 37 

41 -SVR Polynomial03 1974.0579 1766.9259 113.6069     7980.3367 7653.5294 71.8555 37 

42 -SVR Polynomial10   591.4326   514.3722   36.4659     2714.7401 2475.1795 22.4048 19 
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Algorithm 
Insensitive 
Loss 
Function 

Kernel 
Training Test 

Rank 
      

43 -SVR Polynomial11   591.4326   514.3722   36.4659     2714.7396 2475.1789 22.4048 17 

44 -SVR Polynomial12   591.4326   514.3722   36.4659     2714.7400 2475.1794 22.4048 18 

45 -SVR Polynomial13   591.4326   514.3722   36.4659     2714.7406 2475.1799 22.4048 21 

46 -SVR Polynomial20 1974.0579 1766.9259 113.6069     7980.3367 7653.5294 71.8555 37 

47 -SVR Polynomial21   204.5962   154.5386     8.7482     2386.2121 2060.6638 18.4476 24 

48 -SVR Polynomial22   204.7640   155.0126     8.8096     2382.2093 2057.1981 18.4172 22 

49 -SVR Polynomial23   204.8097   155.2215     8.8341     2386.0071 2060.8847 18.4514 23 

50 -SVR Polynomial30 1018.1176   917.7205   61.7556  16923.3082 13173.4292 110.6201 60 

51 -SVR Polynomial31   187.9912   141.3769     9.9572       415.4350 352.3095 3.5486 1 

52 -SVR Polynomial32   188.1437   141.5263     9.9956       417.2176 351.8043 3.5419 2 

53 -SVR Polynomial33   188.0339   141.4812     9.9807       416.5891 352.3169 3.5487 3 

54 -SVR Polynomial40 1974.0579 1766.9259 113.6069     7980.3367 7653.5294 71.8555 37 

55 -SVR Polynomial41   134.6000     76.5773     4.2875   12626.3062 9238.3976 75.5675 55 

56 -SVR Polynomial42   133.0966     76.9926     4.2838   13323.6259 9752.4481 79.7976 59 

57 -SVR Polynomial43   133.1872     76.9833     4.2820   13288.3393 9724.9978 79.5669 58 

58 -SVR Polynomial50 1289.1320 1147.3179 78.5027 128795.5779 92146.4689 753.0239 72 

59 -SVR Polynomial51   124.5840     79.1025     5.1283     4606.1172 3737.0180 31.5878 33 

60 -SVR Polynomial52   124.4859     79.2116     5.1418     4561.4802 3707.1155 31.3581 32 

61 -SVR Polynomial53   124.2459     79.1910     5.1452     4632.6211 3760.0786 31.7891 34 

62 -SVR Polynomial60 1974.0579 1766.9259 113.6069   7980.33667 7653.52941 71.85545 36 

63 -SVR Polynomial61   109.0720     53.1058     3.3695   84919.0835 53961.4693 426.8698 69 

64 -SVR Polynomial62   108.8123     53.1381     3.3808   85222.2912 54165.8336 428.5077 70 

65 -SVR Polynomial63   109.9402     55.2473     3.4825   77215.1257 49033.6687 387.8482 68 

66 -SVR Radial Basis   161.6960     84.7390     4.2626     7056.4205 6214.1145 54.8612 45 

67 -SVR Sigmoid0 1017.2201   826.2256   69.6440     1607.9273 1249.052 10.5878 7 

68 -SVR Sigmoid1 3748.6288 3358.6702 215.8664     8811.2744 8661.4520 83.4359 35 

69 -SVR Sigmoid2 3588.8270 3068.2610 194.0320   12617.2081 12497.0746 121.7557 54 

70 -SVR Sigmoid3 1842.2663 1568.1254   88.0983     8179.5092 8049.5779 77.8916 44 

71 -SVR Sigmoid4 1814.4390 1633.4990 101.4700     3222.3784 2984.1346 32.2298 8 

72 -SVR Sigmoid5 1940.7084 1740.7857 111.4437     4127.6143 3848.2153 40.7347 25 
  *Note: Polynomial32 represents third degrees PKη with the corresponding value of 2,∆ =  while sigmoid0 represents SKη with  the corresponding value 
of 0.∆ =  
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Figure 4. Predicted performance and forecast of electricity consumption period 1978-2026 utilizing training and test sets 
 
 

In pursuit of this article’s primary objective of data mining, 
Table 2 depicts the analysis results for the prediction 
performance of 72 simple stacked ensemble SVR-based time-
series algorithms in predicting annual electricity consumption. 
Among the 72 time-series algorithms, Algorithms 1, 10, 30, and 
31 proposed in the literature (Chong et al., 2017; Shapi et al., 
2021) have been employed as benchmark comparisons. These 
algorithms were selected because of limited previous studies that 
utilized AI-based time-series algorithms for electricity 
consumption prediction in Malaysia. The analysis results 
presented in Table 2 revealed that simple stacked ensemble ν -
SVR-based (Algorithms 51, 52, and 53) and simple stacked 
ensemble ε -SVR-based (Algorithms 15, 16, and 17) time-series 
algorithms, utilizing the PKη  is outperformed other kernel 

functions such as LK ,η RK ,η  and SK.η  These algorithms ranked 
in the top 6 for prediction performance among the 72 simple 
stacked ensemble SVR-based time-series algorithms considered 
in this article. Furthermore, the analysis results demonstrate 
that the formulated simple stacked ensemble ε -SVR-based 
time-series algorithm utilizing PK ,η  improved the prediction 
performance of the formulated simple stacked ensemble SVR-
based time-series algorithm in the literature. 
 
In the literature, Chong et al. (2017) and Shapi et al. (2021) 
conveyed that the ε -SVR time-series algorithm, respectively 
associated with RKη  and LKη  is the superior time-series 
predictive algorithm for predicting the electricity consumption 
in smart commercialized buildings in Johor State and the annual 
electricity consumption in Malaysia. However, the analysis 
results depicted in this article were discrepant with those 
presented in the literature (Chong et al., 2017; Shapi et al., 
2021). Nevertheless, the analysis results in this article remain 
rational as the annual electricity time series in Malaysia for the 
period 1978-2021 revealed a compound growth non-linear 

characteristic (Figure 1). This characteristic is consistent with 
the employed kernel function from a mathematical perspective. 
As a result, this divergent finding highlights that the utilization 
of the appropriate kernel function in the simple stacked 
ensemble SVR-based time-series algorithm is highly dependent 
on the intrinsic attributes of the acquired time-series dataset. By 
acknowledging the inherent characteristics of the acquired time-
series data, researchers can enhance the accuracy and reliability 
of their predictive algorithms, thus contributing to more 
effective forecasting in the context of electricity consumption in 
smart commercialized buildings. 
 
On the other hand, this study has deployed the top-ranked of the 
formulated simple stacked ensemble SVR-based time-series 
algorithm (Algorithm 51) to forecast 5-year future annual 
electricity consumption for 2022-2026 as depicted in Figure 4. 
This article highlighted that the initial value of the future value 
period 2022-2026 has been filled in utilizing the SLR predicted 
algorithm formulated based on the acquired time-series dataset 
for the period 1978-2021, in which the statistical analysis 
revealed a statistically significant ( )0.0000P value− ≈  linear 
association between the annual electricity consumption and the 
year. This step is to ensure the forecasting of 5-year future 
annual electricity consumption utilizing Algorithm 51 can be 
performed. Based on Figure 4, the annual electricity 
consumption is expected to experience continuous growth in 
the future. In other words, this forecasted 5-year future annual 
electricity consumption is rational and valid due to the 
expectation of the continual development of the Malaysian 
population in 2023 (Department of Statistics Malaysia, 2023) 
and accumulated technological advancements due to the arrival 
of the Industrial Revolution 4.0 (IR4.0). Therefore, 
policymakers establish more effective regulations and undertake 
beneficial actions for benefit for economic, environmental, 
human, and social. 
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4. Conclusions and Policy Implications 
 
The short-term annual energy consumption is predominantly 
utilized for effective socio-economic development, energy 
saving, and environmental protection decision-making. 
Consequently, this study aims to formulate a novel simple 
stacked ensemble SVR-based time-series algorithm for 
forecasting annual electricity consumption in Malaysia for a 
limited dataset scenario utilizing CRISP-DM data science 
methodology. To authenticate the superiority of formulated AI 
time-series algorithms, a total of 72 simple stacked ensemble 
SVR-based time-series algorithms, including the benchmark 
comparison SVR-based time-series algorithms formulated in 
previous studies, were comprehensively evaluated and presented 
in this article. The principal analysis results revealed that the 
formulated simple stacked ensemble SVR-based time-series 
algorithm, based on the ν -insensitive loss function and the 
third-degree polynomial kernel outperformed the other 71 
simple stacked ensemble SVR-based time-series algorithms 
taken into account in this article, including four benchmark 
comparison SVR-based time-series algorithms formulated in the 
literature. In conclusion, the insightful forecasted results 
acquired from the superior formulated simple stacked ensemble 
ν -SVR time-series algorithm can primarily be beneficial for 
policymakers in establishing more effective regulations and 
undertaking actions that can be beneficial to economic, 
environmental, human, and social, which are the principal 
pillars of the Sustainable Development Goals (SDGs) such as 
affordable and clean energy (SDG7), decent work and economic 
growth (SDG8), industry, innovation and infrastructure 
(SDG9), sustainable cities and communities (SDG11), 
responsible consumption and production (SDG12), and climate 
action (SDG13). To further enhance the accuracy and the 
superiority of the formulated simple stacked ensemble SVR-
based time-series algorithm, this study proposes extending this 
work to incorporate other atmospheric, meteorological, and 
socioeconomic exogenous variables, such as wind, temperature, 
rainfall amount, population, economic trading activities, as 
potential exogenous variables in the future. This is because the 
aforementioned exogenous variables potentially affected the 
annual electricity consumption in Malaysia. 
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