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ABSTRACT  

 
Ensuring the dimensional accuracy of constructed structures is crucial for quality 
control purposes in assessing whether the elements align with the design dimensions 
and tolerances and also to identify inconsistencies and deformations to prevent 
subsequent construction complications. This paper explores the integration of 3D laser 
scanner and Building Information Modeling (BIM) as an automated validation system 
for assessing dimensional quality. This method employs 3D laser scanner, point cloud 
registration and processing and scan-to-BIM techniques to facilitate dimensional 
deviation/tolerances analysis and verification. The paper presents a review of existing 
research on the automated dimensional quality assessment by using scientometric 
analysis and critical reviews. Firstly, three (3) key research themes are recognized and 
described based on the findings of scientometric analysis: a) reality capture to 
information integration, highlighting the transition from raw point cloud acquisition 
and registration to semantically enhanced BIM representations, b) dimensional 
conformance, which implements tolerance-aware comparisons between as-built data 
and design models to ensure traceability and compliance, and c) automation to site 
domain, which integrates the workflows into field application via automated system, 
machine learning, and deep learning to facilitate inspection, monitoring, and decision-
making. Subsequently, existing assessment methodologies were evaluated and 
contrasted via critical review. The gaps between existing methodologies and actual 
needs are summarized. Finally, future directions in the field are anticipated 
correspondingly. Overall, this paper contributes to future research and applications 
concerning dimensional quality assessment through BIM application. 
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1.  Introduction  
 
Quality control (QC) constitutes a fundamental component of 
construction projects, ensuring that the resulting outputs conform 
to established standards and specifications while meeting criteria 

for safety, functionality and durability. Efficient QC practices 
mitigate risks of defects (C. Kim et al., 2013) and structural 
failures, lower expenses linked to rework (Choi et al., 2024), and 
enhance confidence among stakeholders. Neglect of QC in 
construction projects can lead to loss of money, delays and legal 
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issues. Projects that do not have proper quality control processes 
can also face reputational damage, as stakeholders may lose trust 
in contractor’s ability to provide quality outcomes. Furthermore, 
a lack of QC can make it hard to meet sustainability goals, as 
inefficient practices lead to excessive resources and harm the 
environment. 
 
Geometric (Mirzaei et al., 2023) or dimensional quality 
assessment is a critical procedure in construction that verifies 
structural components adhere to design criteria for dimensions, 
tolerances (Pevzner et al., 2020) and geometry. This procedure is 
important to ensure correct alignment, operation and structural 
integrity (Özkan et al., 2024). Dimensional discrepancies 
frequently occur due to multiple reasons throughout the design, 
production, installation and construction processes. Deficiencies 
in design documentation or misreading of specifications may lead 
to components that do not conform as intended. Fabrication 
problems, including defective equipment or inaccurate 
measurements, can result in dimensional differences. During 
installation, factors such as improper alignment procedures or 
environmental factors including temperature and humidity might 
lead to the error.  
 
This paper examines the integration of 3D laser scanner and 
Building Information Modeling (BIM), emphasizing their 
theoretical foundations and applications for the construction 
industry in improving the accuracy, efficiency, and reliability of 
automated dimensional quality assessment processes of as-built 
structures. 
 
2. Background 
 
2.1   Problem Statement 
 
Traditional quality control techniques frequently exhibit 
inefficiencies, inaccuracies (De Angelis et al., 2015), manual 
measurements using tape measures (Truong-Hong et al., 2020) or 
calipers that are prone to errors (Q. Wang et al., 2015) and 
insufficient interoperability. While these have served the 
construction industry for a number of decades, they face 
significant challenges that often compromise both efficiency and 
accuracy. Traditional QC introduces human dependency, which 
brings inconsistencies, as inspections and assessments are subject 
to judgement and expertise of an individual. Traditional methods 
are also time-consuming (Jung et al., 2014; Özkan et al., 2024), 
require substantial labor (Xiong et al., 2013) and often lead to 
delays in the resolution of quality issues. Another limitation is the 
lack of accuracy, which may not be able to identify small 
imperfections or misalignments (Kalasapudi et al., 2015) that can 
eventually become costly repairs or safety risks. Further, reliance 
on paper-based records poses challenges in managing data, hence 
making project monitoring and regulatory compliance difficult. 
Poor QC can also jeopardize structural safety (Özkan et al., 
2024), creating potential hazards for occupants and workers and 
reputational damage to contractors and firms. 
 
Advances in technology, particularly the integration of BIM and 
laser scanners are reshaping traditional practices and offer 
promising solutions to these problems. BIM serves as a centralized 

platform for data management, collaboration (Zeng et al., 2024) 
and visualization (Choi et al., 2024), whereas laser scanner 
delivers detailed geometric data (C. Wang et al., 2015) for the 
development of precise as-built models. Their integration 
improves accuracy, automates quality assessment procedures and 
enables instantaneous decision-making (Volk et al., 2018). 
Additionally, it simplifies compliance checks and documentation, 
optimizing a historically burdensome task. The impact of 
automation on construction quality control goes beyond just 
efficiency. Automated systems encourage sustainability by 
maximizing the use of resources and minimizing waste generated. 
They enhance collaboration through centralized data platforms, 
where stakeholders can make informed decisions quickly. 
Automation further ensures making it very easy to maintain 
consistent quality standards on large and complex projects. 
Overcoming the weaknesses of traditional methods of quality 
control, and automation poses the way for a new standard in 
reliability, safety and sustainability in the construction industry. 
 
2.2   Research Objectives 
 
This paper focuses on the dimensional quality assessment and 
attempts to address the following research questions through a 
comprehensive review of automated dimensional quality 
assessment: a) What are the key research themes in the field? b) 
How have the key research themes been developed? c) What are 
the characteristics of the methodologies employed in each theme 
and gaps exist between them? d) How will the field develop in the 
future? 
 
3. Methodology 
 
This paper combines the scientometric analysis with a critical 
review to deliver a comprehensive review of existing research 
findings. The research methodology is illustrated in Figure 1. 
 
 
 

 
 

Figure 1 Schematic representation of research methodology 
 
For a comprehensive literature review, literature retrieval is a 
crucial step. In this study, a pilot search was conducted in Scopus 
and Web of Science databases and compared. As a result, Scopus 
database was selected as the main literature database because it 
also covered the results from Web of Science. Articles were 
collected up to 2024. PRISMA (Preferred Reporting Items for 
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Systematic reviews and Meta-Analyses) method was adopted for 
the systematic review, to support the precise flow, reporting of 
information, and strengthen transparency.   
 
3.1   Literature Retrieval and Preliminary Analysis 
 
The search formula was conducted as follows: TITLE-ABS-KEY 
("laser scan") OR TITLE-ABS-KEY ("laser scanner") AND 
(TITLE-ABS-KEY ("building information modeling") OR 
("building information modelling") OR BIM) AND TITLE-ABS-
KEY (measure* OR inspect* OR assessment* OR evaluate*) 
AND TITLE-ABS-KEY (quality OR geometric OR dimension* 
OR tolerance* OR geometry) AND TITLE-ABS-KEY 
(automat*). 
 
The search yielded a total of 139 publications, and the articles 
were further filtered to remove the irrelevant publications. The 
scope of the search was limited to: a) document type: article and 
conference paper (yield at 134 publications), b) subject area: 
engineering (yield at 104 publications), c) year: until 2024 (yield 
at 91 publications), and d) excluded irrelevant publications, such 
as works without BIM linkage and non-automated process (yield 
at 90 publications). After filtering, 90 publications were obtained, 

as shown in Table 1, which explained the main sources and 
publication year.  
 
 3.2   Scientometric Review 
 
Scientometric review is a quantitative method for examining 
scientific literature, emphasizing the assessment of research 
trends, collaboration networks and the influence of scientific 
contribution. Utilizing statistical and computational 
methodologies offers insights into the evolution of a research 
domain, identifying influential authors, publications, journals and 
institutions. The primary objectives of scientometric review are to 
comprehend emerging research trends, evaluate the impact of 
scientific contributions, inform funding and policy decisions, 
promote collaborations and visualize the structure of knowledge 
domains. This method is beneficial for academics, policy makers 
and funding organizations aiming to identify key areas of impactful 
research within a designated domain. In this paper, VOSviewer 
was used as a tool for scientometric review, recognized for its 
user-friendly interface and capacity to generate interactive 
visualizations. The key research themes were identified by 
scientometric review, followed by the identification of relevant 
publications for each theme through the examination of their 
abstract.  

 
Table 1 Primary source data and number of publications 

 
Source of publications Publication year 

Before and in 
2010 

2011 – 2015 2016 – 2020 2021 – 2024 Total 

Automation in 
Construction 

 5 9 9 23 

Journal of Computing in 
Civil Engineering 

  2 2 4 

Lecture Notes in Civil 
Engineering 

  1 3 4 

Journal of Building 
Engineering 

   3 3 

Avn Allgemeine 
Vermessungs Nachrichten 

  1 1 2 

Engineering, Construction 
and Architectural 
Management 

  1 1 2 

ISPRS Journal of 
Photogrammetry and 
Remote Sensing 

  1 1 2 

Nanotechnologies in 
Construction 

   2 2 

Procedia Engineering  2   2 
Proceedings of SPIE the 
International Society for 
Optical Engineering 

   2 2 

Advances in 
Computational Design 

  1  1 

Applied Energy   1  1 
Applied Geomatics    1 1 
Applied Sciences 
Switzerland 

  1  1 

Bauingenieur 1    1 



108  Kamaliah Mohd Saha & Shek Poi Ngian-International Journal of Built Environment and Sustainability 13:1 (2026) 105–118 
 

 

Buildings    1 1 
Computer Aided Civil and 
Infrastructure Engineering 

  1  1 

Congress on Computing 
in Civil Engineering 
Proceedings 

 1   1 

Dyna Colombia  1   1 
Energy and Buildings  1   1 
Engineering Structures    1 1 
Fib Symposium   1  1 
Frontiers in Built 
Environment 

   1 1 

IEEE International 
Conference on 
Multisensor Fusion and 
Integration for Intelligent 
Systems  

   1 1 

IEEE Transactions on 
Instrumentation and 
Measurement 

   1 1 

International Journal of 
Architectural Heritage 

   1 1 

International Journal of 
Building Pathology and 
Adaptation 

   1 1 

International Journal of 
Sustainable Building 
Technology and Urban 
Development 

  1  1 

Measurement Journal of 
the International 
Measurement 
Confederation 

  1  1 

Ocean Engineering    1 1 
Sensors    1 1 
Structural Control and 
Health Monitoring 

   1 1 

Structural Survey 1    1 
Structure and 
Infrastructure Engineering 

   1 1 

Others  10 7 3  
Total 2 20 29 39 90 

 
 
3.3   Critical Review 
 
The critical review in this paper consisted of two (2) primary 
phases. Firstly, a comprehensive reading and analysis of the 
publications was conducted, focusing primarily on the key 
research themes associated with the papers and their content. 
Secondly, analyzing and assessing the publications, focusing 
mainly on the methods used in each publication. The two (2) 
phases offer a comprehensive understanding of advancements in 
automated dimensional quality assessment. 
 
4. Results 
 
In this section, a scientometric review was carried out to identify 
the main themes associated with the 90 publications obtained 

from the search and filtration process. Subsequently, to enhance 
the critical review of the publications, the main themes were 
modified based on the distribution of the papers to derive the 
essential key research themes 
 
4.1   Scientometric Review and Identification of Main 

Theme 
 
Scientometric review was conducted on the 90 publications 
obtained from the search and filtering process. VOSviewer was 
employed to examine the co-occurrence of keywords that were 
collected from the title and abstract fields. The frequency 
threshold for keywords was established at one (1) time, while 
keywords with minimal relevant information such as a) energy 
efficiency, interior finishing robot, and solar systems: not 
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dimensional quality assessment, b) laser-doppler-vibrometry: 
different domain, c) case study and construction: generic term, 
and d) South Africa: geography application, were excluded. 
Similar terms such as terrestrial laser scanner, laser scanning, 
terrestrial laser scanning, and terrestrial 3D laser scanning were 
combined.  
 
The results indicated that 71 keywords were identified which 
were subsequently categorized and analyzed into five (5) clusters. 
Table 2 displays the content of each cluster, while Figure 2 
illustrates the analysis results and Figure 3 presents the average 
publication year of each keyword.  
 
The five (5) clusters obtained as shown in Figure 2 were 
examined. Cluster 1 included mainly terms "data acquisition", 
"laser scanner", "point cloud", and "terrestrial laser scanner", 
indicating that this cluster focused on how dimensional 
information is captured in the field and aligned into a meaningful 
dataset. The literature treats laser scanners and terrestrial laser 
scanners as instruments to capture physical structure information. 
The raw point cloud is subsequently aligned via registration, 
followed by point cloud segmentation and clustering. Cluster 2 
included mainly terms "bim", "digitalization", "reverse 
engineering", "scan-to-bim", and "visualization", indicating that 
this cluster focused on modeling. This cluster encompasses the 

conversion of geometry into information and visualization. The 
integration of reverse engineering underscores the production of 
parametric elements that preserve design semantics. The BIM 
node’s equal centrality to the point cloud indicates that research is 
increasingly evaluated based on its effectiveness in bridging raw 
geometry and structured models. Cluster 3 included "accuracy", 
"as-built", "automated dimensional measurement", "automated 
quality control", "dimensional measurement", "geometric quality 
assessment", "quality control", and "tolerance", indicating that 
this cluster focused on dimensional quality and tolerance 
assessment. This cluster operationalizes as-built versus design by 
converting measurements for automated comparisons. Cluster 4 
included "automation", "augmented reality", "deep learning", 
"machine learning", and "virtual reality", indicating that this 
cluster focused on automation and Artificial Intelligence (AI). The 
automation seeks to minimize manual involvement and enhance 
scalability. Cluster 5 included "bridge", "building", "façade”, 
"finite element", "infrastructure", "manufacturing", "mep", 
"precast concrete", "precast pier", "steel", "steel girder", "steel 
portal frame", "timber", and "wall" indicating that this cluster 
focused on application that categorized within the types. The 
application encompasses erection alignment, installation, and 
precast fit-up assessment. 
 

 

 
 

Figure 2 Keyword co-occurrences (network visualization, five (5) clusters) 
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Table 2 Keyword and occurrence in each cluster 
 

No. Keyword Occurrences No. Keywords Occurrences 
Cluster 1 (18 items, red) Cluster 4 (11 items, yellow) 
1 3d image 1 1 augmented reality 1 
2 data acquisition 2 2 automation 7 
3 laser scanner 26 3 convolutional 

neural network 
1 

4 lidar 3 4 deep learning 2 
5 mobile laser 

scanning 
2 5 error 1 

6 mobile lidar 1 6 machine learning 7 
7 point cloud 31 7 object detection 5 
8 point cloud 

clustering 
1 8 occlusion 1 

9 point cloud 
processing 

3 9 pixel 1 

10 point cloud quality 1 10 texture 1 
11 point cloud 

registration 
3 11 virtual reality 2 

12 point cloud 
segmentation 

5 Cluster 5 (24 items, purple) 

13 scan method 1 1 bridge 7 
14 scan planning 1 2 building 10 
15 sensor 3 3 crack 1 
16 terrestrial laser 

scanner 
16 4 damage 5 

17 terrestrial 
photogrammetry 

1 5 façade 1 

18 unmanned aerial 
vehicle 

4 6 feasibility 1 

Cluster 2 (8 items, green) 7 feature 7 
1 bim 31 8 finite element 2 
2 cad drawing 2 9 infrastructure 2 
3 digitalization 4 10 installation 1 
4 quantity take-off 1 11 manufacturing 1 
5 reverse engineering 1 12 mep 1 
6 scan-to-bim 6 13 precast concrete 7 
7 scan-vs-bim 2 14 precast pier 1 
8 visualization 1 15 progress 

monitoring 
5 

Cluster 3 (10 items, blue) 16 retrofit 1 
1 accuracy 2 17 safety 1 
2 as-built 19 18 scaffold 2 
3 automated 

dimensional 
measurement 

2 19 steel 3 

4 automated 
displacement 
measurement 

2 20 steel girder 2 

5 automated quality 
control 

1 21 steel portal frame 1 

6 dimensional 
measurement 

3 22 tank 1 

7 displacement 
measurement 

1 23 timber 1 

8 geometric quality 
assessment 

6 24 wall 2 

9 quality control 15    
10 tolerance 2    

 
 
According to Table 2, high occurrences of terms "laser 
scanner", "terrestrial laser scanner", and "point cloud" establish 
a theme of data acquisition of the physical structure. It involves 

raw data registration, processing, clustering, and segmentation. 
The inclusion of scan planning and scan method indicates a 
methodical focus on coverage, incidence angle, and noise. 



111  Kamaliah Mohd Saha & Shek Poi Ngian-International Journal of Built Environment and Sustainability 13:1 (2026) 105–118 
 

 

Collectively, Cluster 1 establishes a strong data foundation, 
where the focus of research has transitioned from acquiring 
dense point clouds to ensuring their quality, which preserves 
characteristics essential for subsequent modeling. In Cluster 2, 
the BIM term predominates, indicating the formalization of 
collected geometry within information-dense models. It 
demonstrates an effort to automate the conversion from point 
clouds into parametric elements. In Cluster 3, high occurrences 
of terms as-built and quality control, signify that the field has 
shifted from capture to the auditable performance of 
constructed reality to design intent. Within this distribution, 
dimensional, displacement, and tolerance are foundational 
criteria, where dimension validates the geometric accuracy of 
constructed elements that influence rigidity and strength, 
displacement measures the structure's reaction, such as 
misalignment, settlement, and rotation, while tolerance 
provides the established criteria that transforms measurement 
into requirement determination. In Cluster 4, the themes focus 
on automation, indicating a transition from traditional methods 
to actual on-site integration. However, deep learning is 
comparatively limited, suggesting that this method selection is 
not significant. In Cluster 5, the terminology significantly aligns 
with application domains. The predominant setting is a building 
and followed closely by a bridge. Two (2) operational concerns, 
which are damage and progress monitoring, indicate that actual 
condition assessment and construction-phase oversight are 
significant, where damage is crucial as it links geometry or 
dimension to structural integrity, functionality, and lifecycle 
cost, while progress monitoring is essential as it transforms 
observations into time-stamped evidence of output, which 

influences scheduling, cash flow and adherence to contractual 
obligations.   
 
In addition, according to Figure 3, the inferences regarding 
research trends can be drawn. During the initial phase (2016 to 
2018), the research focused on the essentials of geometric 
acquisition and preprocessing utilizing a laser scanner, point 
cloud registration, segmentation, and building modeling, 
establishing measurement reliability and reproducible capture 
methodologies. The second phase (2019 to 2020) transitions the 
field from scan-to-BIM to verifiable as-built information, closely 
linking quality control, dimensional measurement, and progress 
monitoring, indicating the rise of model-centric assessment and 
verification. The subsequent phase (2021 to 2022) is 
characterized by automation, facilitating semantic recognition of 
elements. In the most recent period (2023 to 2024), deep 
learning and reverse engineering are closely integrated with 
BIM, demonstrating comprehensive and data-driven approaches 
that transmit dimensional uncertainties into decision support 
and lifecycle updates, effectively aligning with digital twin 
practices.  
 
Based on the results of the analysis, five (5) themes were mainly 
identified in conjunction with scientometric analysis. The 
themes included the data acquisition (Cluster 1), modeling and 
digitalization (Cluster 2), dimensional assessment (Cluster 3), 
automation (Cluster 4) and application (Cluster 5). 
 
 

 
Figure 3 Keyword co-occurrences (average publication year) 
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4.2   Identification of Key Research Themes  
 
Abstracts of 90 publications were examined, to identify the 
articles relevant to specific themes, and then determined to 
modify the primary themes based on the distributions of the 
associated papers to enhance the critical review of the 
publication. The clusters identified before were data-driven 
groupings from a co-occurrence network, while the themes 
constitute a theory-informed synthesis, aligned to the workflow 
of scan-to-BIM research. 
 
Utilizing scientometric map, the findings were restructured into 
three (3) research themes that align with the field and preserve 
all cluster content. Theme 1 – Reality Capture to Information 
Integration consolidated Clusters 1 and 2, illustrating the 
seamless workflow from data acquisition, registration, 
clustering, and segmentation to semantics-rich modeling and 
digitalization. Theme 2 – Dimensional Conformance preserves 
Cluster 3, acknowledging its methodological essence: 
transforming measurement into verifiable conclusions via 
dimensional, displacement, and tolerance, while explicitly 
addressing traceability. Theme 3 – Automation to Site Domain 
integrates Clusters 4 and 5, wherein machine learning and 
virtual reality are applied in specific domains such as buildings, 
bridges, precast elements, and steel structures to provide 
damage detection, progress tracking, and decision-ready 
outputs. 
 
4.2.1   Reality Capture to Information Integration 
 
Laser scanners have evolved from a documentation instrument 
into the foundation of continuously updated, data-rich as-built 
models. Progressive scans across the project life-cycle effectively 
facilitate the creation of accurate and comprehensive as-is-BIM. 
The practice of reality capture  (Ali et al., 2020; Arayici, 2008; 
Chen et al., 2019) has matured from unstructured scanning to a 
systematic specification-oriented acquisition process, wherein 
scan objectives, instrument setup (Sing et al., 2024), and 
control networks are explicitly organized to facilitate 
subsequent information utilization.  
 
The workflow initiates with data acquisition aimed to provide an 
accurate 3D representation of the constructed environment 
(Macher et al., 2017; Q. Wang, Cheng, et al., 2016), utilizing a 
3D laser scanner, including a Terrestrial Laser Scanner (TLS). 
The choice of scan method depends on target scale (Q. Wang et 
al., 2015), accessibility, obstructions, and accuracy 
requirements, while scan planning (Biswas et al., 2015; Frías et 
al., 2022; Han et al., 2023; Sing et al., 2024; Son & Han, 2023; 
Tang & Alaswad, 2012; C. Xu et al., 2024), including station 
configuration and incidence angles (Anil et al., 2012; Han et al., 
2024; O’Donnell et al., 2019), ensures measurement reliability. 
 
Raw capture undergoes systematic point cloud processing. 
Initially, multi-station data is subjected to point cloud 
registration (Brandstatter et al., 2024; G. Cheng et al., 2023; 
Dong et al., 2018; P. Kim et al., 2018; Lin et al., 2021; 
Nahangi et al., 2015; Romanschek et al., 2020) utilizing target-
based methodologies, with a specific focus on the quality of the 

point cloud, considering factors such as overlap (Hamdan et al., 
2021), noise (Anil et al., 2012; Gao et al., 2012; Han et al., 
2024; Sing et al., 2024; B. Wang et al., 2024; Q. Wang et al., 
2015; Xiong et al., 2013; Zeng et al., 2024; J. Zhao et al., 
2024), ranging error, and resolution (Hamdan et al., 2021; C. 
Kim et al., 2013; B. Wang et al., 2024). Subsequently, point 
cloud clustering (Jiang et al., 2020b) and segmentation (B. 
Wang et al., 2024; C. Wang & Cho, 2014) isolate elements 
(example columns, beams, and plates) and distinguish 
construction from different materials, facilitating analysis rather 
than visualization. Throughout, outlier management and 
resolution harmonization (Shan et al., 2023), ensure that models 
derive justifiable accuracy from the registered point cloud data. 
 
Information enrichment occurs when geometry is converted 
into computable representations that facilitate design 
verification and decision-making. Scan-to-BIM procedures 
recreate parametric elements using reverse engineering, 
whereas comparisons assess conformity between the constructed 
state and design intent. In instances where complete 
parametricization is not required, authoritative CAD drawing 
(M. Kim & Lee, 2023) extractions provide deliverables for 
detailing and coordination.  
 
Reality Capture is also maturing from points and pixels to 
integrated, analysis-ready representations (Echeverría-Valiente 
et al., 2017). Multi-sensor register infrared thermography with 
point cloud technology produces orthothermograms that 
identify thermal anomalies and measure heat loss, making it 
valuable for envelope diagnostics. However, this approach 
remains inconsistent in terms of resolution, field of view, and 
perspective during registration as noted by (González-Aguilera 
et al., 2012). Therefore, recent work from (C. Kim et al., 
2013) has addressed the resolution and shadow effects of 
thermography by mapping corrected thermal images onto 3D 
geometry, thereby enhancing subsequent energy simulation and 
defect detection. The advantage lies in the superior decision-
quality thermal-geometric data, while the weakness remains 
sensitivity to capture conditions and preprocessing selections. 
 
On the geometric side, automated transformation of 
unstructured point clouds into semantically enriched, minimizes 
manual effort, proving in speed and repeatability, but its 
effectiveness still depends on the regularity of the scene and the 
segmentation robustness (Zabin et al., 2020). Upstream 
planning is progressively optimized, including scan planning 
associates quality and accuracy criteria, as studied by (Frías et 
al., 2022; B. Wang et al., 2024), with scanner configuration and 
positioning beneficial for coverage under occlusion, although it 
relies on dependable models and specifications. 
 
Ultimately, integration facilitates project-level value. Model-
linked visualization conveys discrepancies to site teams, 
facilitates automatic quantity take-off (Sing et al., 2024) and 
supports audit trails for acceptance. This comprehensive 
workflow enhances digitalization by transforming field data into 
reliable information assets. 
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Established that Scan-to-BIM workflow may provide analysis-
ready models when the quality of scan planning, registration, 
and processing are managed. Fails when capture, registration or 
processing are sensitive and when clustering and segmentation 
encounters irregular geometrics or occlusions.  
 
4.2.2   Dimensional Conformance 
 
Dimensional conformance determines if the constructed 
geometry meets the specified tolerance requirements of the 
project (Kalasapudi et al., 2015), hence supporting contractual 
approval and structural integrity. In the scan-to-BIM context, 
dimensional quality assessment advances from a metrically 
reliable point cloud data to a design-referenced model, where 
discrepancies are calculated and identified. The primary need is 
accuracy (Kong et al., 2023) and traceable control, ensuring that 
any reported deviations reflect the work. 
 
With these foundations, dimensional measurement assesses the 
size, positions, and orientation of elements such as offsets and 
levels in relation to design intent. Contemporary workflows 
increasingly utilize automated dimensional assessment, deriving 
primitives and features from point clouds while calculating 
distances and angles (Peansupap & Theint, 2024). The outcome 
is a concentrated deviation field refined into actionable metrics 
in relation to defined tolerance categories.   
 
Related to dimensionality, (Anil et al., 2012) quantified the 
reliability of identifying steel sections from a 3D laser scanner. 
The investigation employing the manual method revealed a low 
identification accuracy. The primary causes included scan 
occlusion due to unrelated objects, mixed pixels at the edges, 
and noisy data. Complementing this, (Frías et al., 2022; B. 
Wang et al., 2024) demonstrated proactive scan planning, 
enhancing station configuration, incidence angles, resolution, 
and overlap, which improves dimensional accuracy by 
minimizing occlusions and noise. Collectively, these results 
justify the implementation of statistical methods, such as those 
implemented by (Razali et al., 2023) or machine learning 
methods, such as DINOv2 (B. Wang et al., 2024), SVM (Xiong 
et al., 2013; J. Zhao et al., 2024)  which may enhance 
identification and establish the dataset and findings as a baseline 
for recognition algorithms. This method was also proposed by 
(Anil et al., 2012) for future work. 
 
In addition to size, positions, and orientation assessments, 
displacement measurement (D. Kim et al., 2020) evaluates 
movement and functionality such as deflection and settlement. 
This distinction is crucial, where dimensional non-conformance 
indicates a production or installation/erection error (Li et al., 
2023), while displacement beyond limitations denotes load-path 
or restraint issues. Dimensional and displacement studies 
collectively offer a comprehensive perspective on performance 
throughout the erection and handover phases. 
 
The ultimate objective is a quality control process that is 
evidence-based and efficient. The framework establishes 
tolerance criteria, assesses constructed elements accordingly, 
and highlights discrepancies via model-associated reports. When 

linked to BIM data, the prompts trigger targeted rework, 
informed approval, or engineering justification, completing the 
cycle from measurement and assessment to decision-making. In 
summary, a thorough integration of accuracy, dimensional and 
displacement assessment, and rule-based dimensional quality 
assessment for modern projects, enhances assurance while 
reducing inspection burden (Nena et al., 2024). 
 
Determines that automated dimensional assessments transform 
point-cloud features into tolerance-based metrics appropriate 
for approval determinations. Fails occur when occlusion or noise 
degrade identification and when orientation or position errors 
propagate from the capture process. 
 
4.2.3   Automation to Site Domain 
 
Translating automation into the site domain involves converting 
models into consistent field operations for inspection (González-
Aguilera et al., 2012), acceptance, and handover. Field 
acquisition plans must emphasize feasibility (Shan et al., 2023), 
establishing explicit objectives such as installation or erection 
inspection for precast concrete (Jiang et al., 2020b, 2020a; M.-
K. Kim et al., 2015, 2019; Q. Wang et al., 2015, 2017, 2018; 
Q. Wang, Cheng, et al., 2016; Q. Wang, Kim, et al., 2016; Y. 
Xu et al., 2022), steel structures (Anil et al., 2012; G. Cheng et 
al., 2023; Laefer & Truong-Hong, 2017; Yan & Hajjar, 2021a, 
2021b), walls (Adán et al., 2011; Choi et al., 2024; Zabin et al., 
2020), tunnels (Vierhub-Lorenz, Werner, von Olshausen, et 
al., 2023; Vierhub-Lorenz, Werner, Weiher, et al., 2023), and 
timber (Özkan et al., 2024) components. BIM establishes the 
contractual foundation, such as manufacturer requirements and 
installation or erection tolerances, to ensure that each 
automated operation produces traceable documentation instead 
of visuals. 
 
Automation (Adán & de la Rubia, 2019; Balado et al., 2017; 
Bosché et al., 2015; W. Cheng et al., 2019; Forth et al., 2024; 
Garwood et al., 2018; Jung et al., 2014; Liu et al., 2021; 
Lorenzo et al., 2012; Razali et al., 2023; Schleinkofer & Rank, 
2009; Tang & Akinci, 2012; Zhu et al., 2023) also expedites 
progress monitoring (Love et al., 2019; Prieto et al., 2020; 
Rada, Kuznetsov, Akulov, et al., 2023; Rada, Kuznetsov, 
Zverev, et al., 2023) and condition assessment, by automatic 
identification of cracks (Turkan et al., 2018) and damage (H. 
Kim et al., 2021) on the building façade and envelope. In safety 
critical tasks, dimensional outputs inform a coupled finite 
element analysis (Yan & Hajjar, 2024), seismic risk assessment 
(X. Wang et al., 2023), and assessing the structural impact 
(Özkan et al., 2024) of detected misalignment, so integrating 
dimensional quality with engineering performance. 
 
On-site interpretation is driven by machine learning (Hake et 
al., 2023; Hu & Hu, 2024) or deep learning (J. Kim et al., 
2024) methods that operate at the pixel and texture level (Zabin 
et al., 2020) to extract robust features from images (Guldur & 
Hajjar, 2017; Rankohi & Waugh, 2015) and point clouds. 
Object detection and semantic segmentation utilizing neural 
networks accurately identify components and relationships.  
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The advantages include scalability and consistency (Frías et al., 
2022; Xiong et al., 2013), particularly in automatic 
segmentation (B. Wang et al., 2024; C. Wang & Cho, 2014), 
defect or damage detection, and guided capture, reducing cycle 
time and operator reliance, facilitating near real-time, fit-for-
purpose insights, as the algorithms run repeatably. However, 
automation is fragile under occlusion (Gao et al., 2012) and 
noisy point cloud data acquisition, requires high computation for 
large scan data (J. Zhao et al., 2024), robust fitting (Q. Wang et 
al., 2015; Zeng et al., 2024) of imperfect as-built dimensions, 
interoperability with BIM or other tools (Love et al., 2019), and 
can be confused by the geometry of thin/curved members 
(Xiong et al., 2013), such as angles, plates, rebars, and cables. 
In practice, this high-reliability deployment integrates 
automation, which remains useful for decision-making on 
projects, replacing traditional methods whose reliability has 
declined.  
 
Implements scalable automation for progress and defect 
detection, along with guided capture. Fails in the presence of 
occlusion or noisy data, or curved elements, and when faced 
with interoperability or computational constraints.  
 
5. Discussions 
 
Guided by the research objectives, a synthesis of 90 papers 
indicates that the current scan-to-BIM literature is most 
accurately seen as a dependency chain for reality capture and 
information integration that supports verifiable dimensional 
conformance, which subsequently facilitates automation on site. 
The advancements are consistent, as recent automation studies 
consider scan planning and scan parameters to address 
inadequate failure modes such as occlusion and incidence angle. 
This framework explains both the successes in the literature in 
achieving the first and second objectives, and the trends 
observed that meet the needs and requirements in real projects.  
 
Across themes, characteristic methods are evident, which are 
data capture, dimensional fitting, clustering and segmentation, 
tolerance-aware deviation assessment, and BIM integration. 
However, discontinuities persist, especially in studies that 
transmit errors from capture decisions to acceptance 
determinations, lack statistical metrics, and interoperability 
among tools. To bridge the gaps, there are several contributions 
to address this review for future: a) treat the workflow as a 
unified system from data capture to dimensional conformance 
that is regulated by defined requirements and specifications, 
where predefined scan planning mitigation is to be included, b) 
statistical metrics for the dimensional assessment when 
comparing against traditional method, c) translating project 
specifications or tolerance rules machine-readable as 
parameterized checks, d) to close the loop inside BIM such as 
visualization of quality results by color map, and e) link the 
acceptable elements to downstream such as structural analysis to 
ensure structural evaluations are conducted on the actual 
construction rather than on idealized geometry. 
 
 

6. Contribution to the Theoretical and 
Practical Dimension 
 
This research contributes to the theoretical basis of automated 
dimensional quality assessment by establishing a novel 
integration between 3D laser scanner and Building Information 
Modeling (BIM). This study enhances theoretical understanding 
by exploring point-cloud data processing and linking as-built 
geometry for dimensional assessment, creating a data-driven 
feedback loop between construction accuracy and engineering 
design validation. 
 
Theoretically, this study introduces a hybrid verification 
paradigm that transition quality control assessment from 
traditional to dynamic, model-based verification systems. It 
strengthens the utilization of Scan-to-BIM workflows not only 
for documentation purpose but also for structural performance 
analysis, thereby expanding the scope of BIM beyond 
coordination to structural integrity evaluation. 
 
This study also offers significant practical contributions to the 
field of construction quality control and structural verification, 
by providing a systematic, technology-based framework for 
stakeholders such as contractors and client to autonomously 
verify the dimensional quality control and actual structural 
performance of as-built structures, when third-party consultants 
are unavailable or impractical due to cost or time constraints. 
Practically, the workflow allows experts to document as-built 
conditions using 3D laser scanner and translate this data into 
BIM-compatible formats for precise comparison with design 
models. By utilizing this workflow, users can identify 
dimensional deviations, simulate real-world load conditions and 
assess whether the deviations compromise structural integrity. 
This reduces expensive rework, prevents structural failures and 
ensures greater compliance to engineering standards and safety 
codes. 
 
7. Conclusions 
 
This paper provides a thorough and methodical assessment of 
automated dimensional quality techniques. Initially, 139 
publications were obtained from the Scopus database and further 
filtered, with the total number of publications involved being 
90. Subsequently, three (3) key research themes were identified 
through scientometric analysis: a) reality capture to information 
integration, b) dimensional conformance, and c) automation to 
site domain. Due to high accuracy requirements for the 
dimensional quality assessment in as-built structures, 3D laser 
scanners are currently employed for the assessment, achieving 
millimetric standard deviation/tolerance requirements. This 
paper evaluated and assessed prior research, revealing that the 
integration of 3D laser scanners and BIM offers a revolutionary 
method for automated dimensional quality assessment, where 
the processes enable stakeholders to analyze dimensional 
deviation/tolerance, ensuring enhanced accuracy, efficiency, 
and automation in quality control. The implementation 
significantly reduces dependence on human verification and 
improves data-informed decision-making in construction. In 
conclusion, this paper is significant for future research and 
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applications in automated quality dimensional assessment of as-
built structures. 
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