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ABSTRACT  
 
The red palm weevil (RPW) is one of the worst destructive pests of palms in the 
world. This study focuses for the first time on the coconut tree stress detection and 
discrimination among different stages of red palm weevil (RPW) stress-attacks using 
vegetation indices (VI) and the percentage of accuracy assessed. Different spectral 
indices were assessed using Sentinel 2A data of year 2018. Based on field identification, 
four classes of coconut tree were considered and evaluated using visual maps of VI: 
severe, moderate, early and healthy coconut trees. Results showed that the vegetation 
indices Normalized Differenced Vegetation Index (NDVI), Renormalized Difference 
Vegetation Index (RDVI), SQRT (IR/R), Difference Vegetation Index (DVI) and 
Green Vegetation Index (GVI) are sensitive to coconut trees caused by RPW attacks. 
They discriminated among the considered classes with more than 50% accurate from 
census data of field observation compared with remote sensing data of Sentinel 2A 
image.  Nevertheless, they express the healthiness of tree stress between 0.308 – 
0.673 range with 55% to 91% accurate. According to these results, it was concluded 
that remote sensing technique using Sentinel 2A data is a promising alternative for 
RPW detection based on VI. 
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1.  Introduction  
 

Red Palm Weevil (RPW) (Olivier) (Coleopteran: 
Curculionidae) is a key pest of coconut Cocos nucifera L. 
originating from South and South East Asian Countries (Fiaboe 
et al., 2013). It can be found in Asia Pacific region such as India, 
China, Japan, Malaysia, Philippines, Vietnam, Thailand and Sri 
Lanka (Food and Agriculture Organization of the United (FAO) 
& International Center for Advanced Mediterranean Agronomic 
Studies (CIHEAM), 2017), that has significantly expanded its 
geographical and host range during the last three decades. In the 
Middle East, RPW is causing wide spread damage to date palm 
Phoenix dactylifera L., having both agricultural impacts on the 
palm production and environmental impacts. The rapid spread 
of RPW is due to many circumstances such as late detection of 
infested palms improper disposal of infested trees, improper 
assessment of the risks, few natural enemies of the pest, 
difficulties in managing the mass trapping and lack engagement 
with coconut farmers (CABI, 2017). 

 
Since today, there is no effective techniques applied to detect 
the RPW infestation at the early stage because the infestation 
not clearly visible and only can be seen until it become severe or 
the coconut tree falls down. Likewise, nobody can confirm the 
conditions inside the coconut tree whether it is destroyed or not 
and with or without visible signals of damages from the outside. 
According to Dembilio and Jacas (2010), the morphological and 
biological characteristics of each one developmental instars are 
various among researches. (El-Shafie et al., 2013; Ju et al., 
2011; Salama et al., 2009; Faghih, 1996; Kalshoven et al., 
1981) 

 
To date, according to Department of Agriculture (DOA) 
Malaysia, the lifecycle of RPW is 2-5 days for egg, 25-105 days 
for larva, 14-21 days for pupae and 60 – 105 days of adult which 
is stipulated in the Standard Operating Procedure (SOP) 
Malaysia (2017) on controlling the pest of RPW in Malaysia 
(DOA, 2017). It means that it took about 3.5 month of repeat 
cycle. Table 1 lists the different biological parameters, 
established by previous researches for each one of the 
developmental instars of R. ferrugineus. 

 
Table 1 The development period of R. ferrugineus. (Adapted 
from: Ávalos et al., 2014; Dembilio & Jacas, 2010) 

 
Development period (days) Previous 

researches 

Egg Larva Pupae Total  

3 - 5 33 - 46 20 - 36 - (El-Shafie et 
al., 2013) 

3 - 4  30 - 67 23 - 36 - (Ju et al., 
2011) 

- 69 - 128 16 - 29 - (Salama, et 
al., 2009) 

1 - 6 41 - 78 15 - 27 - (Faghih, 
1996) 

- 44 - 210 - 105 - 
210 

(Kalshoven et 
al., 1981) 

 
For instance, the extremity of the palm leafstalks become worn 
and histolytic with yellowish and brown colour, as well the top 

crown colour becomes pale-green. The green leaves around the 
palm crown may deform due to deterioration of the support 
axes, resulting in an umbrella-like appearance. A viscous and 
sticky brown liquid substance oozes out from small holes in the 
trunk of the palm trees, with emergence holes for the adult 
RPW occurring in the crown or trunk. Finally, the fine pieces of 
chewed-up fibers emerge from the points (Bannari et al., 2016). 
In the previous researches, several methods have been 
implemented including which introduced by the Integrated Pest 
management (IPM). This include controlling and monitoring in 
ecology (e.g. insects and surroundings), biology (lifecycle), 
physical (pheromone trap) and chemical (e.g. pesticide and 
trunk injection). Apart from that, several advanced early 
detection methods also have been proposed including visual 
inspection (CABI, 2017), acoustic sensor (Victoria Soroker et 
al., 2016; Mankin, 2012; Siriwardena et al., 2010), thermal 
imaging (Golomb et al., 2015; V. Soroker et al., 2013), 
specially trained sniffer dogs (Nakash et al., 2000). All these 
have been tested and investigated in order to assist in identifying 
the infestation at the early stages. However, each of these 
methods has encounter many issues especially in implementation 
because of different problems occur with different conditions. 
Based on the literature review, the symptomatology of a palm 
tree infested by R. ferrugineus varies depending on the palm 
tree species, infestation level, and attack area. In order to 
identify those symptoms, especially on the early stage of 
infestation, the lifecycle (i.e. from egg to larva, pupae and adult 
instars) of the present and absent insects need to be confirmed. 
The coconut tree may show different stage of severity which 
similar to severity level of palm species as outlined by V. 
Soroker (2013) in Table 2. 

 
Table 2 The stage of Severity of RPW infestation at palm tree 
(V. Soroker et al., 2013) 
 

 
Remote sensing technique is becoming an alternative as it can 
assist in detecting the attacks by RPW using the satellite 
imagery. The early stress detection of the tree before visual 
damage symptoms are detectable through vegetation indices 
over few decades of numerous study.  (Lichtenthaler et al., 
1996). Therefore, it is believed that different stage of coconut 
tree stress-attack can be differentiated using the empirical data 
with relation to spectral bands. The multispectral data of 
Sentinel 2A. Sentinel 2A comes with multispectral instrument 
(MSI) sensor with blue (band 2), green (band 3), red (band 4) 
and near infrared (band 8) at 10-meter spatial resolution. 
(SUHET, 2013). Additionally, Sentinel 2A image can access the 
vegetation status (Das et al., 2019; Sonobe et al., 2018) same 
like other multispectral images not only because of available 

Stages of Severity 

Stage Description 

1 Two differences – frond in V shape or in a zigzag 
position, holes in one or more leaves. 

2 Some leaves collapsed, asymmetric inner leaf 
growth. 

3 Crown partially collapsed, no new inner leaves. 

4 All crown leaves collapsed into “umbrella” shape, 
tree cannot be recovered and chopped down. 
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bands but the vegetated area which can be sensor-detected is not 
much comparable with other high resolution satellite such as 
SPOT and Landsat (Taylor et al., 2011). Thus, the suitable VI’s 
can be identified based on the spectral bands. Table 3 below 
shows the spectral bands that are used with different algorithm 
of VIs’. The algorithm used the green (G) band, red (R) band 
infrared (IR) and near infrared (NIR) band of the spectral 
reflectance. 

 
Table 3 The algorithm of vegetation indices based on spectral 
bands 

 

 
The use of spectral vegetation indices, calculated as a ratio or 
normalized difference from near-infrared (NIR, 750–1350 nm) 
and visible bands, has become one of the most common remote-
sensing approach to retrieve biophysical variables over the past 
three decades (Colwell, 1974; Tucker 1979; Sellers 1985). 
Among all of the VI algorithm used, GVI and RDVI is the later 
used compared to DVI and NDVI. GVI is first implemented by 
Gitelson et al. (1996) that based on green and NIR spectral band 
(Panda, Ames, & Panigrahi, 2010) while Roujean and Breon 
(1995) introduced RDVI. NDVI is frequently used among 
reserchers in many studies, but in high vegetation cover, this 
index is saturated and also its relation with biophysical 
vegetation is not linear ((Haboudane et al., 2004; Vescovo & 
Gianelle, 2008; Jiang et al., 2008; Baret & Guyot, 1991; 
Gitelson, 2004). In contrast, the non-saturated index can be 
seen in low vegetation cover has been discussed by Barati et al. 
(2011). Although this has long been the traditional medium to 
highlight a particular property of vegetation, the introduction of 
further methods for detecting the coconut tree stress using these 
indices are currently under-used in the commercial, 
government, and scientific communities. 
 

2. Materials and Methods 
 
2.1  Description of Study Area 

 
The study employs one coconut plantation of two-hectare 
coverage in Arau, Perlis with the total number of 395 coconut 
tree as shown in Figure 1. The geographic extent of the coconut 
tree plantation is found between latitudes of 6°27'35.84"N to 
6°27'25.27"N and longitudes of 100°16'54.9"E to 
100°16'54.8"E. The ground data sampling is done by gathering 
the ground data (census) which were collected at every coconut 
tree stands using a handheld Global Positioning System (GPS) 

unit (GPSMAP®62sc, Garmin Ltd., KS). The coordinate 
systems of the 395 samples were registered using World 
Geodetic System (WGS) 84 coordinate system. Then, the 395 
ground data (census) will be compared with the VI extracted 
from the Sentinel 2A. The 395 sampling points will distinguish 
the severity level of coconut tree stress (i.e. healthy, early, 
moderate and severe). Apart from that, ground observations for 
vertical and horizontal control are recorded using GPS 
technique. The UAV image is used for reference (image to 
image registration) in order to geometric corrected the 
multispectral Sentinel 2A image of 2018 which is provided by 
the European Space Agency (ESA). This image is used to extract 
the VI for NDVI, RDVI, SQRT (IR/R), DVI and GVI in order 
to determine the coconut tree stress.  

 

 
 

Figure 1 Location of study area and ground data sampling 

 
2.2  Image Processing and Accuracy Assessment 

  
The raw data obtained from the satellite sensors has to undergo 
a few image pre-processing (Jensen & Lulla, 1987) such as image 
subset and image enhancement in order to maintain the quality 
of the satellite image. The image pre-processing and image 
processing is done by using ERDAS Imagine 2014 and ArcGIS 
10.4 software. Next, the VI will be extracted, for example, the 
NDVI extracted values will be between -1 to +1 (Conte et al., 
2007; Panda et al., 2010). 
 
Supervised classification technique is used in this project for 
quantitative analysis of multispectral image data. The 
classification is done by clustering the pixels in a dataset into 
classes corresponding to the testing classes. There are many 
supervised classification techniques  (Lillesand et al., 2004) 
including Mahalanobis, Minimum Distance, Parallelepiped, 
Maximum Likelihood and Spectral Angel Mapper (SAM). But in 
this project, Maximum Likelihood technique is implemented.  

Algorithm (VI) Previous 
Implementation 
(Author, year) 

NDVI =  (Rouse et al., 1974) 

RDVI = ) /  (Roujean & Breon, 
1995) 

SQRT (IR/R) =   

DVI =  (Richardson & 
Wiegand, 1977) 

GVI =  (Gitelson et al.,1996) 
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The actual (i.e. census) data and predicted (i.e. classified) is 
done by a classification system. The accuracies of the pixel based 
classifications obtained were evaluated in terms of overall 
accuracy, producer's accuracy, user's accuracy metrics 
(Congalton, 1991). The percentage of overall accuracy was 
calculated using the following formula:  
 
Overall accuracy = Total number of correct samples X 100 

    %Total number of samples 
 

3. Findings and Discussion 

 
3.1 Vegetation Indices 
 
From our first visual analysis of the five VIs tested in this study, 
two provided results that showed some potential for 
correspondence with our field observations (Figure 2 and Figure 
3). The NDVI enhanced the biomass density more than the GVI, 
which was expected because NDVI has been developed for 
purposes such as this. However, both indices show the top of 
the palm tree canopies almost uniformly with considerable 
biomass density. The spatial pattern discrimination of the 
various levels of attack is due to the palm tree crowns remaining 
green, despite earlier RPW attacks. Consequently, these VIs 
were sensitive only to vegetation cover and biomass density, but 
not to the pigmentation or physiological variation. Based on this 
visual analysis and interpretation, and the fieldwork (sampling 
and inspection), these VIs could discriminate among different 
levels of RPW stress- attack. This was confirmed by statistical 
regression tests that considered the four identified classes in the 
field (healthy; early attacked; moderate attacked; and severely 
attacked). For each class, 395 sampling points were located and 
the values of NDVI and GVI were extracted. Figure shows the 
results from first degree polynomial functions fitted through the 
full sample data set. For NDVI, the magnitude of separation 
amongst all classes was relatively high. NDVI showed a 
marginally better distinction between all classes however, it 
could significantly separate early and moderate attacked trees. 
Consequently, it is evident that the considered VIs extracted 
from Sentinel data are appropriate for RPW stress-attack 
detection. 
 
It is clear from the results that, NDVI is the best reflectance 
index to explain variability of trees stress. The producer 
accuracy, user accuracy and overall accuracy are being accessed 
through four stages which are Healthy, Early, Moderate and 
Severe. The result of VI such as NDVI, RDVI, SQRT (IR/R), 
DVI and GVI are analyzed together with the severity level of 
coconut tree stress in a map representation (Figure 4 – 8). The 
map of coconut tree using the five methods are presented using 
green colour (lightness to brightness), orange and red colour to 
differentiate different stages of coconut tree stress. The method 
presented in this work is sufficiently general to be applied to 
classify the healthy and unhealthy coconut tree with respect to 
monitor vegetation characteristics (e.g. leaf area index (LAI), 
chlorophyll content, etc.) 

 
 

 
 
Figure 2 NDVI and GVI behavior for RPW stress-attack 
conditions 

 

   
 

Figure 3 Derived maps of coconut trees: (a) NDVI; (b) GVI 

 

 

Figure 4 NDVI map of coconut tree stress 

 

b a 
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Figure 5 RDVI map of coconut tree stress 

 

 
 

Figure 6 SQRT (IR/R) map of coconut tree stress 

 

 
 

Figure 7 DVI map of coconut tree stress 

 

 
 

Figure 8 GVI map of coconut tree stress 

 
 



6      Faradina, Md Azlin & Amirul Audi - International Journal of Built Environment and Sustainability 7:3(2020) 1–9 

 

 

The overall accuracy for NDVI, RDVI, SQRT (IR/R), DVI and 
GVI can be seen in Table 4 – 8 below. The highest accuracy is 
NDVI = 91% followed by SQRT (IR / R) = 71%, RDVI = 
61%, GVI = 55% and the lowest accuracy is DVI = 30%. 

 
Table 4 Accuracy Assessment of NDVI method 

 
 Actual  

Health
y 

Earl
y 

Moderat
e 

Sever
e 

Tota
l 

C
la

ss
if

ie
d

 

Healthy 97 2 0 1 100 

Early 12 236 0 0 248 

Moderat
e 0 17 25 1 43 

Severe 0 0 2 2 4 

 Total 109 255 27 4 395 

 

Overall Accuracy 91% 

 
Table 5 Accuracy Assessment of SQRT (IR / R) method 

 
 Actual  

Health
y 

Earl
y 

Moderat
e 

Sever
e 

Tota
l 

C
la

ss
if

ie
d

 Healthy 59 1 0 1 61 

Early 49 193 0 0 242 

Moderat
e 1 61 25 1 88 

Severe 0 0 2 2 4 

 Total 109 255 27 4 395 

 
Overall Accuracy 71% 

 
 

Table 6 Accuracy Assessment of RDVI method 
 

 Actual  

Health
y 

Earl
y 

Moderat
e 

Sever
e 

Tota
l 

C
la

ss
if

ie
d

 

Healthy 28 0 0 0 28 

Early 81 185 1 2 269 

Moderat
e 0 70 24 0 94 

Severe 0 0 2 2 4 

 Total 109 255 27 4 395 

 

Overall Accuracy 61% 

 
 
 
 
 
 
 
 
 

Table 7 Accuracy Assessment of GVI method 
 

 Actual  

Health
y 

Earl
y 

Moderat
e 

Sever
e 

Tota
l 

C
la

ss
if

ie
d

 

Healthy 91 121 0 1 213 

Early 17 105 3 0 125 

Moderat
e 1 28 21 1 51 

Severe 0 1 3 2 6 

 Total 109 255 27 4 395 

 

Overall Accuracy 55% 

 
 

Table 8 Accuracy Assessment of DVI method 

 
 Actual  

Health
y 

Earl
y 

Moderat
e 

Sever
e 

Tota
l 

C
la

ss
if

ie
d

 

Healthy 12 0 0 0 12 

Early 93 82 1 2 178 

Moderat
e 4 173 24 0 201 

Severe 0 0 2 2 4 

 Total 109 255 27 4 395 

 
Overall Accuracy 30% 

 
 
Table 9 The maximum and minimum index value of NDVI and 
GVI method 
 

Year (2018) NDVI GVI 

Maximum value 0.673 0.548 

Minimum value 0.339 0.308 

 
Table 9 shows the contrast of maximum and minimum value of 
VI extracted from Sentinel-2A images in 2018. It can be 
concluded that NDVI and GVI give significant value of VI 
compared to DVI, RDVI and SQRT (IR/R). It shows that the 
healthiness of tree stress is ranged between 0.308 – 0.673. 

 
3.2 Comparison The Accuracies Of Different Vegetation 
Indices  
 
Table 10 Correlation coefficient between vegetation indices for 
classified (from Sentinel data) and actual (from ground 
observation) 
 

Vegetatio
n Index 

NDVI GVI SQRT 
(IR/R) 

RDVI DVI 

Correlatio
n  

0.996*
* 

0.567*
* 

0.917*
* 

0.863*
* 

0.366*
* 

Note:** Correlation is significant at the 0.05 level (two-tailed) 
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A Pearson correlation test showed that the relationship between 
classified vegetation index (i.e. NDVI) and actual vegetation 
index (Table 10) are statistically significant, r = 0.996, p = 
.004.  
 
Table 11 Relationship between NDVI, GVI, SQRT (IR/R), 
RDVI and DVI indices and different curve estimation methods 
 

Meth
od 

NDVI GVI SQRT 
(IR/R) 

RDVI DVI 

 R2 p R2 p R2 p R2 p R2 p 

Linea
r 

0.
99
3 

0.
00
7 

0.
32
1 

0.
67
9 

0.
84
0 

0.
16
0 

0.
74
6 

0.
25
4 

0.
13
4 

0.
86
6 

Expo
nenti
al 

0.
78
9 

0.
21
1 

0.
64
3 

0.
35
8 

0.
66
0 

0.
34
0 

0.
50
8 

0.
49
2 

0.
17
2 

0.
82
8 

Logar
ithmi
c 

0.
70
8 

0.
29
2 

0.
44
6 

0.
55
4 

0.
56
1 

0.
43
9 

0.
53
8 

0.
46
2 

0.
23
4 

0.
76
6 

Polyn
omial 

0.
99
3 

0.
00
7 

0.
74
1 

0.
25
9 

0.
85
6 

0.
14
4 

0.
81
9 

0.
18
1 

0.
99
6 

0.
00
4 

 
Note: Bold values represent significant regressions with p < .05 
 
The polynomial method seems to be advantageous compared 
with the majority of studies on different vegetation indices 
(Table 11). In this analysis, R2=0.558 show that 55.8% of total 
variation in classified point of tree data is explained by the total 
variation of actual point of tree. However, the good fit model 
(refer Table 12; Model Summary, ANOVA and coefficients) is 
shown significant (p- value = .000). A regression parameter test 
showed that the relationship between actual point of tree and 
classified point of tree is statistical significant, p-value = .000. In 
details, for each additional actual point of tree, classified point of 
tree will significantly increase by 0.805 unit. 
 
Table 12 Analysis of regression parameter of classified and 
actual point of tree 
 

Model Summary   

Mo
del 

R R 
Squar
e 

Adj
uste
d R 
Squ
are 

Std. Error of 
the Estimate 

  

1 .747a 0.558 0.5
33 

68.891   

a. Predictors: (Constant), classified   

       

ANOVAa 

Model Sum 
of 
Squar
es 

df Mean Square F Sig. 

1 Regressi 1077 1 107795.643 22.7 .000

on 95.64
3 

13 b 

Residual 8542
8.107 

18 4746.006     

Total 1932
23.75
0 

19       

a. Dependent Variable: actual 

b. Predictors: (Constant), classified 

       

Coefficientsa 

Model Unstandardiz
ed 
Coefficients 

Standardized 
Coefficients 

t Sig. 

B Std. 
Err
or 

Beta 

1 (Consta
nt) 

19.23
5 

22.
708 

  0.84
7 

0.40
8 

classifie
d 

0.805 0.1
69 

0.747 4.76
6 

0.00
0 

a. Dependent Variable: actual 

 
 

4. Conclusion 

 
The results indicate that VI such as NDVI and GVI as derived 
from Sentinel 2A multispectral imagery offer a potentially viable 
and important alternative for discrimination the severity level of 
RPW stress-attack. Therefore, it can be concluded from this 
positive results that this proposed method can be further testing 
with other open access data, perhaps analyze with other 
parameters that might influence the RPW outbreak especially on 
palm tree species. 
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