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ABSTRACT 
 

Above-Ground Grass Biomass (AGGB) mapping and estimation is one of the important 
parameters for environmental ecosystem and grazing-lands management, particularly 
for livestock farming. However, previous models for estimation of AGGB with satellite 
imagery has some difficulty in choosing a particular satellite and vegetation index that 
can build a good estimation model at a higher accuracy. This study explores the 
potentiality of Sentinel 2A data to derive a satellite-based model for AGGB mapping 
and estimation. The study area was Skudai, Johor in Malaysia Peninsular. Grass 
parameters of forty grass sample units were measured in the field and their 
corresponding AGGB was later measured in the laboratory. The samples were used for 
modelling and assessment. Four indices were tested for their fitness in modelling 
AGGB from the satellite data. The result from the grass allometric analysis indicates 
that grass height and volume demonstrate good relationship with the measured AGGB 
(R² = 0.852 and 0.837 respectively). Vegetation Index Number (VIN) has the best fit 
for modeling AGGB (R2 = 0.840) compared to other vegetation indices. The derived 
satellite AGGB estimate was validated with the assessment field and allometry derived 
AGGB at RMSE = 15.89g and 44.45g, respectively. This study demonstrate that VIN 
derived from Sentinel 2A MSI satellite data can be used to model AGGB estimation at a 
good accuracy. Therefore, it will contribute to providing reliable information on 
AGGB of grazing lands for sustainable livestock farming. 
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1.  Introduction 
 
Grasslands are among the most popular types of covered 
vegetation, covering over 31.5% of the world's land mass (Latham 
et al. 2014). It is one of the sustainable resources and provides a 
significant portion of livestock with the food source (Herrero et 
al,2013), however, previous models for estimation of AGGB with 
satellite imagery has some difficulty in choosing a particular 
satellite and vegetation index that can build a good estimation 
model at a higher accuracy. Many studies have used remote 

sensing data such as Landsat (Powell et al 2010, De et al, 2012, 
Hansen and Loveland 2012), world view, thematic mapper and 
MODIS data product to examine the mapping and estimation of 
AGGB. In addition to vegetation indices, spectral bands, image 
transformation algorithms are often used to identify AGGB 
modeling variables (Zang and Kovacs 2012, Mutanga et al 2012). 
Because different remote sensing data are available with different 
spectral and spatial resolutions, a large number of potential 
variables can be used (Myint et al, 2011). However, the correct 
identification of key variables is critical to the accurate mapping 
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and estimation of above-ground biomass and the selected variables 
can vary considerably depending on the grass species, the time of 
investigation, the location of the study and the remotely sensed 
data themselves (Karlson et al, 2015; Dube et al 2014). Another 
key problem for investigating grass studies is the use of a proper 
modelling algorithm (Yuyun et al 2019). 
 
Understanding variations in AGGB at various scales is becoming 
extremely critical among interested parties, like farmers, 
ecologists and scholars (Sibanda et al 2017). Remote sensing 
researchers have accumulated experiences on the assessment of 
vegetation/physiognomic types and their ecological state (Mucina, 
2019). Recently, the usefulness of earth observation (EO) data has 
become much more popular and viable with an increase in 
available sensors as well as innovations to obtain robust 
quantitative information on grass biomass. (Bastin et al, 2014). 
Knowing that different EO methodologies were evaluated in 
aboveground biomass quantification, no study showed a 
consistent, accurate and repeatability operational method for 
estimating biomass at smaller to larger scales (Sibanda et al 2017). 
This is due to the variations in vegetation's biophysical, 
environmental and topographical characteristics in space and time 

(Popescu et al 2009, Montesano et al 2013). Previous studies have 
reported even higher correlations between grass biomass and 
vegetation indexes (e.g., Mutanga, et al 2012). Most of them, 
however, investigated ‘simpler’ vegetation communities (often 
monospecific) on relatively flat ground and uniform soil. 
 
In this study, Sentinel 2A MSI was used to estimate the AGGB in 
Skudai, Johor, Malaysia Peninsula. The satellite derived AGGB 
was later validated with the grass allometry derived and the 
assessment field AGGB. Therefore, the objective of this paper is 
to derive a satellite transformation model for AGGB estimation 
from ground sample points to Sentinel 2A MSI satellite data. Four 
grass species were identified (Figure 1) in the study area, although 
they belong to one of the largest and most economically and 
ecologically important families of plants, they exist as minor 
components next to forest of the plant community in the area. 
The grasses are Pennisetum purpureum (elephant grass), 
Ottochloragraccillima (creeping grass), Genus stipa (needle grass) 
and Poacea grass.  
 
 

 
 

 
                               Figure 1. Dominant grass in the study area (A)Elephant grass  (B) Poacea grass   (C) Needle grass   (D) Creeping grass 
                
 
2. Material and Method 
 
2.1  Description of Study Area 
 
The study area was Universiti Teknologi Malaysia (UTM) 
campus, Skudai in the State of Johor Bahru, Peninsular Malaysia. 
The total area was 1,222 hectares. It lies between 170000mN to 

172500mN and 346000mE to 351000mE (Figure 2.). The 
average yearly rainfall is 250 mm, the wettest month is in 
November with an average of 320 mm. June and July are overall 
the driest months with an average of 130 mm. Temperatures 
rise above 30°C (86°F) throughout the day and drop rarely 
below 20°C (68°F) during the night. Temperature is 27°C at an 
average. (Country data and statistics (2019))  
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Figure 2. Study area 

Source: INSTeG UTM 
  
 
 
 

2.2   Material 
 
The materials used for this study are the field data and Satellite 
data. The remotely sensed data were derived from the Sentinel 
2A imagery. It has thirteen bands and a spatial resolution of 
10m. Two bands were used in this study; the red band (central 
λ of 665nm) and a near-infrared band (central λ of 842nm) as 
was investigated by many scholars (Yuyung, 2019, Rongrong 
2018, Li et al 2016, Zumo et al 2021, Ali et al 2017). The data 
was downloaded on 18th July 2018 at the period when grasses 
were fully saturated. In-situ data are the grass allometry and the 
measured GAB of some selected sample points. Ground control 
and validation sample points were measured using the quadrant 
method. Forty samples for each of the four different dominant 
grass species were harvested at 1m2 grids for both the controls 
and assessment. Five samples’ points were measured in each 
plot. This was done in order to avoid degradation/destruction 
of the environment by minimising the sample size and meeting 
up with the required specification. The mean and the standard 
deviation of the measured biomass for samples in each plot was 
computed (see Table 1)

Table 1 Statistics of collected samples 
 No. of samples/plots Range of AGGB  Mean Std. dev. 
Total No. of samples 40 38.21 - 197.32 118.63 9.87 
Samples collected modelling 20 41.21 - 195.00 117.88 9.84 
Sample collected for assessment 20 38.21 - 197.32 109.23 8.97 
 
 
2.3   Method 
 
The method used in this study were grass allometry modelling, 
satellite transformation modelling and validation of results. This 
demonstrated as flowchart in Figure 3 
 

 
Figure 3. Flowchart of methodology 

 
 
 

 
 
Maximum grass height, stem diameter, grass volume and leaf 
area were measured from the field as in-situ observation. 
(Figure 1). Grass volume was measured using displacement 
method, and density of each grass was calculated from its 
measured mass and volume. The clipped vegetation was dried at 
40.6°C for 72 h in an air forced oven. The vegetation was then 
weighed when dried to get the mass per sample and eventually 
calculate the biomass production in tons per hectare. Location of 
the grass samples were acquired using the Global Positioning 
System (GPS) for easy location of the sample points in the 
image. This study considers the use of the most common 
Vegetation indices as Normalized Distribution of Vegetation 
Index (NDVI), Vegetation Index Number (VIN), Ratio 
Vegetation Index (RVI) and Normalized Difference Index (NDI) 
for the modelling of AGGB estimation. 
 
2.3.1 Grass Allometry Modelling 
 
Linear regression between the five measured grass variables and 
the field AGGB was carried out. Grass height and volume was 
found to have a has a good level of fitness for AGGB estimation. 
The relationship between the stem diameter, leaf area and grass 
density were poor. Therefore, grass height and grass volume 
were used for modelling the AGGB estimation.  
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2.3.2 Satellite Transformation Modelling 
 
Reflectance values of band 4 (Red) and band 8 (NIR) were 
extracted from the pixel of each respective band of the sample 
points. The pixel location was identified by the GPS acquired 
coordinates during the sample data acquisition. The four 
vegetation indices were calculated using their respective 
formular (Table 2.) 
 

Table 2. VIs and equations 
 

VI Equation 
NDVI (NIR-R)/(NIR+ R) 
VIN NIR/R 
NDI (NIR-R) 
RVI 𝑅𝑅/NIR 

 

A linear regression between the calculated indices and the in-situ 
AGGB was conducted in order to determine which of these 
indices that will be best for modelling AGGB of the entire study 
area. The relationship of each of the VIs was indicated by R2.   
 
3. Result 
 
3.1. Allometry Result 
 
The result for grass allometry indicates that stem diameter, leaf 
area index and grass densities have a poor fitness for AGGB 
estimation. Their R2 = 0.256, 0.182 and 0.312, respectively. 
This indicates that they are not suitable predictors for AGGB 
estimation. Grass height and grass volume has a good level of 
fitness at R2 = 0.852 and 0.837, respectively. They were used 
for allometry AGGB modelling to derive 5 allometry models for 
this study. Level of performance for each derived allometry 
model was in Table 3. 
 

 
Table 3 Model Summary 

 
Model Model Equation a b c R2 Std. Error. 
1 AGGB = a + b(ht.) 25.131 2.644  0.798 38.638 
2 AGGB = a + b(vol.) 76.973 0.480  0.885 31.790 
3 AGGB = aeb*ht. 93.922 0.011  0.801 31.400 
4 AGGB = aeb*vol. 116.150 0.002  0.884 27.280 
5 AGGB = a + b(ht.) + c(vol.) 28.266 1.301 0.315 0.987 13.760 

Model 5 has the best result of R2 and least standard error. Thus, 
it was considered as the most suitable model to use in the study 
for AGGB estimation, taking grass height and grass volume as 
the most suitable predictors. Average height and volume of grass 
samples were identified and measured.  AGGB was later 
determined for each sample using the created allometric model 
5. 
 
3.2 Spectral Result 
 
The four indices namely NDVI, VIN, RVI and NDI has a good 
level of fitness (R2 = 0.828, 0.840, 0.818, and 0.742 
respectively (Figure 4A - 4D). Among the four, VIN has the best 
fitness and was selected for the AGGB modelling.  

 
Figure 4A Biomass and NDVI relationship 

 
Figure 4B Biomass and VIN relationship 

 

 
Figure 4C AGGB and RVI relationship 
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              Figure 4D Biomass and NDI relationship 
 
Using VIN model equation, Pixel-based sampling of AGGB was 
calculated for all grasses on the grid equivalent to the pixel size 
of the image.  
 
AGGB = 4234x – 3263.6                                  (1)     
 
Where, AGGB is the grass biomass in grammes of a pixel of 
interest and x is the VIN image. 
  
The VIN map calculated for the entire study area has a range of 
0 to 10, but VIN of the grass sample points calculated from the 
image is within the range of 2 to 4. Areas covered by grasses 
were extracted from the satellite imagery using Boolean 
operation (Figure 5A). 1 represents areas all values from 2 – 4 
(grass areas) while 0 represent any other values (non-grass 
areas). The Boolean map was multiplied by the VIN map to get 
the VIN grass map (Figure 5B). the VIN grass map was 
substituted in eqn 1 to get 1 to get the total AGGB of the study 
area. The AGGB map was presented in Figure 5C. 
 
 

 
Figure 5A Boolean grass map 

 
 

 
Figure 5B Grass VIN map 

 

 
Figure 5C AGGB map 

 
3.3 Assessment of Result 
 
Independent evaluations of the spectral derived AGGB were 
verified by validation field samples and allometric calculated 
AGGB. From the assessment, the model developed meets the 
assumption of a linear models (Figure 6A and Figure 6B). 
 
 

 
Figure 6 A. Model validation with Allometry Derived AGGB 
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Figure 6B Model validations with field AGGB 

 
 
The satellite derived AGGB has a level of fitness with the 
allometry and the field measured AGGB (R2 = 0.956, R2 = 
0.997) and a good accuracy at RMSE = 15.90. and RMSE = 
44.45 respectively  
 
 
4. Discussion 
 
Grass allometry model used in this study found out that grass 
height and grass volume are the most suitable predictors for 
estimating AGGB. This agrees with Oliveras (2014) where he 
finds out that plant height was the best predictor of biomass 
estimation. In this paper, stem diameter, density and leaf area 
show no relationship with AGGB. This contradicts the AGB 
estimation of woody plants where DBH is one of the best 
predictors of AGGB as was documented by many scholars (Ubay 
et al (2018). 
 
NDVI and RVI have been popularly used in recent decades to 
estimate biomass at a regional level (Jiang et al., 2015). They 
were criticized, however, for problems with saturation at high 
density vegetation levels (Li et al., 2014). Our study tested four 
of the most frequently used VIs for modelling AGGB estimation 
in a densely vegetated region. These are NDVI, RVI, VIN and 
NDI. VIN was found to be the most suitable VI for the 
modelling the estimation of AGGB using Sentinel 2A data. 
However, this may be verified by further studies using different 
satellite data with different vegetation species. VIN shows a 
significant relationship with grass biomass where R2=0.84. 
 
The grass distribution in the study area covers 221.8 hectares 
out 1,222. The study area is a forested region with few grass 
species. Most grasses were found by the roadside, behind 
buildings and in playing fields. Very little grasses that was meant 
for grazing of livestock. The maximum AGGB within 10m2 was 
13,672.08g and the minimum was 3,014.12g. The total 
estimated AGGB was 323,183,164.70g equivalent to 1.46 tons 
per hectare. This result was similar to Cisneros et al., (2020) 
with 1.8 tons per hectare in a similar tropical region likes 
Skudai; when he used Sentinel 2 MSI data. Result from other 
studies that use MODIS was 0.5 tons per hectare (He et al., 
2014), HJ satellite was 1.22 tons per hectare (Zhou et al., 
2016).   

5. Conclusion 
 
AGGB mapping and estimation is crucial for evaluating the 
health and of grassland eco system including grazing areas. 
Despite some sources of error, satellite data constituted a 
sufficiently accurate indicator of grass biomass and allowed 
biomass estimation and production of maps at a local and 
regional levels. This study confirmed that Sentinel 2A MSI as the 
best satellite data for AGGB estimation. Among the vegetation 
indices analyzed, Vegetation Index Number (VIN) derived from 
satellite data estimates AGGB at a good accuracy compared to 
other indices. The result obtained in this study will be 
beneficent in the decision-making processes regarding the 
expanding of grazing livestock in the study area, hence, 
contributing in the sustainable agriculture and food security. 
 
 
Acknowledgements 
 
The authors sincerely acknowledge Tertiary Education Trust 
Fund (TETFund), Nigeria for sponsoring this study. We also 
acknowledged all staff of Physics and Chemistry Laboratory, 
UTM, particularly Mrs. Aninsah Salikin, Mr. Saiful Rshid and 
Mr Muhammad Salehuddin Baharuddin by providing the 
laboratory facilities needed for the analysis in this study. 
 
Funding 
 
 This work was partially funded by the Ministry of Education 
Malaysia using FRGS grant (Ref: Vote no. 5F211 – Remote 
Sensing-Based Seagrass Ecosystem Services), as offset test of 
grass allometry models. 
 
  
References  
 
Ali, I., Cawkwell, F., Dwyer, E., & Green, S. (2017). Modeling 
Managed Grassland Biomass Estimation By Using Multitemporal 
Remote Sensing Data—A Machine Learning Approach. IEEE Journal of 
Selected Topics in Applied Earth Observations and Remote Sensing, 10(7): 
3254-3264. 
 
Bastin, J. F., Barbier, N., Couteron, P., Adams, B., Shapiro, A., 
Bogaert, J., & De Cannière, C. (2014). Aboveground Biomass Mapping 
Of African Forest Mosaics Using Canopy Texture Analysis: Toward A 
Regional Approach. Ecological Applications, 24(8): 1984-2001. 
 
Country Data and Statistics (2019). www.worlddata.info › Asia › 
Malaysia. Accessed on 28th June 2019. 
 
Cisneros, A., Fiorio, P., Menezes, P., Pasqualotto, N., Van 
Wittenberghe, S., Bayma, G., & Furlan Nogueira, S. (2020). Mapping 
Productivity and Essential Biophysical Parameters of Cultivated 
Tropical Grasslands from Sentinel-2 Imagery. Agronomy, 10(5): 711. 
 
Dube, T., Mutanga, O., Elhadi, A., & Ismail, R. (2014). Intra-And-
Inter Species Biomass Prediction In A Plantation Forest: Testing The 
Utility Of High Spatial Resolution Spaceborne Multispectral RapidEye 
Sensor And Advanced Machine Learning Algorithms. Sensors, 14(8): 
15348-15370. 
 



15           Isa, Mazlan & Noor Dyana - International Journal of Built Environment and Sustainability 8:3 (2021) 9–15 
 

 

De Sy, V., Herold, M., Achard, F., Asner, G. P., Held, A., 
Kellndorfer, J., & Verbesselt, J. (2012). Synergies Of Multiple Remote 
Sensing Data Sources For REDD+ Monitoring. Current Opinion in 
Environmental Sustainability, 4(6): 696-706. 
 
Hansen, M. C., & Loveland, T. R. (2012). A Review Of Large Area 
Monitoring Of Land Cover Change Using Landsat Data. Remote sensing 
of Environment, 122: 66-74. 
 
Herrero, M., Havlík, P., Valin, H., Notenbaert, A., Rufino, M. C., 
Thornton, P. K., & Obersteiner, M. (2013). Biomass Use, Production, 
Feed Efficiencies, And Greenhouse Gas Emissions From Global 
Livestock Systems. Proceedings of the National Academy of 
Sciences, 110(52): 20888-20893. 
 
He, B., Li, X., Quan, X., & Qiu, S. (2014). Estimating the 
aboveground dry biomass of grass by assimilation of retrieved LAI into a 
crop growth model. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 8(2): 550-561. 
 
Jiang, Y., Tao, J., Huang, Y., Zhu, J., Tian, L., & Zhang, Y. (2014). 
The Spatial Pattern Of Grassland Aboveground Biomass On Xizang 
Plateau And Its Climatic Controls. Journal of Plant Ecology, 8(1): 30-40. 
 
Karlson, M., Ostwald, M., Reese, H., Sanou, J., Tankoano, B., & 
Mattsson, E. (2015). Mapping Tree Canopy Cover And Aboveground 
Biomass In Sudano-Sahelian Woodlands Using Landsat 8 And Random 
Forest. Remote Sensing, 7(8): 10017-10041. 
 
Li, F., Chen, W., Zeng, Y., Zhao, Q., & Wu, B., (2014). Improving 
Estimates Of Grassland Fractional Vegetation Cover Based On A Pixel 
Dichotomy Model: A Case Study In Inner Mongolia, China. Remote 
Sensng. 6: 4705–4722. 
 
Lathen, C., Zhang, Y., Chow, J., Singh, M., Lin, G., Nigam, V., & 
Thistlethwaite, P. A. (2014). ERG-APLNR Axis Controls Pulmonary 
Venule Endothelial Proliferation In Pulmonary Veno-Occlusive 
Disease. Circulation, 130(14): 1179-1191. 
 
Mutanga, O., Adam, E., & Cho, M. A. (2012). High Density Biomass 
Estimation For Wetland Vegetation Using Worldview-2 Imagery And 
Random Forest Regression Algorithm. International Journal of Applied 
Earth Observation and Geoinformation, 18: 399-406. 
 
Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., & Weng, 
Q. (2011). Per-Pixel vs. Object-Based Classification of Urban Land 
Cover Extraction Using High Spatial Resolution Imagery. Remote sensing 
of environment, 115(5): 1145-1161. 
 
Mucina, L. (2019). Biome: Evolution Of A Crucial Ecological And 
Biogeographical Concept. New Phytologist, 222(1): 97-114. 
 
Montesano, P. M., Cook, B. D., Sun, G., Simard, M., Nelson, R. F., 
Ranson, K. J., & Luthcke, S. (2013). Achieving Accuracy 

Requirements For Forest Biomass Mapping: A Spaceborne Data Fusion 
Method For Estimating Forest Biomass And Lidar Sampling 
Error. Remote Sensing of Environment, 130: 153-170. 
 
Oliveras I., Maarten V. D., Yadvinder M., Nelson C., Carlos M., Flor 
Z. & Torbjørn H. (2014). Grass Allometry and Estimation of Above-
Ground Biomass In Tropical Alpine Tussock Grasslands: Austral 
Ecology 39: 408–415 
 
Popescu, S. C., Zhao, K., & Gatziolis, D. (2009) Comparing the 
Accuracy of Aboveground Biomass Estimates and Forest Structure 
Metrics at Large Footprint Level: Satellite Waveform Lidar vs. 
Discrete-Return Airborne Lidar. AGU Fall Meeting. 
 
Powell, S. L., Cohen, W. B., Healey, S. P., Kennedy, R. E., Moisen, 
G. G., Pierce, K. B., & Ohmann, J. L. (2010). Quantification Of Live 
Aboveground Forest Biomass Dynamics With Landsat Time-Series And 
Field Inventory Data: A Comparison Of Empirical Modeling 
Approaches. Remote Sensing of Environment, 114(5): 1053-1068. 
 
Rongrong W., Peng W., Xiaolong W., Xin Y., & Xue D. (2018). 
Modeling Wetland Aboveground Biomass In The Poyang Lake National 
Nature Reserve Using Machine Learning Algorithms And Landsat-8 
Imagery. Journal of Applied Remote Sensing, 12(4): 46029_1 – 
046029_12 
 
Sibanda, M., Mutanga, O., Rouget, M., & Kumar, L. (2017). 
Estimating Biomass Of Native Grass Grown Under Complex 
Management Treatments Using Worldview-3 Spectral 
Derivatives. Remote Sensing, 9(1), 55. 
 
Ubay, M. H., Tron E., Ole M. B., & Emiru B. (2018). Aboveground 
Biomass Models for Trees and Shrubs of Exclosures In The Drylands Of 
Tigray, Northern Ethiopia. Journal of Arid Environments 156: 9–18 
 
Yuyun C., Longwei L., Dengsheng L., & Dengqiu L. (2019). Exploring 
Bamboo Forest Aboveground Biomass Estimation Using Sentinel-2 
Data. Remote Sensing. 11: 7. 
 
Zhang, C., & Kovacs, J. M. (2012). The Application of Small 
Unmanned Aerial Systems for Precision Agriculture: A Review. 
Precision agriculture, 13(6): 693-712. 
 
Zhou, X., Zhu, X., Dong, Z., & Guo, W. (2016). Estimation of 
biomass in wheat using random forest regression algorithm and remote 
sensing data. The Crop Journal, 4(3): 212-219. 
 
Zumo, I. M., Hashim, M., & Hassan, N. (2021). Mapping Grass 
Above-Ground Biomass of Grazing-lands using Satellite Remote 
Sensing. Geocarto International, 1-13. 
 
 

 

 


