Assessing the Influence of Anthropogenic Causal Factors on Landslide Susceptibility in Bukit Antarabangsa, Selangor

Authors

  • Amos Mafigiri Verdant Consulting Ltd, 10302 Kampala, Central Region, Uganda
  • Mohd Faisal Abdul Khanan Geospatial Imaging and Information Research Group (GI2RG), Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81300 UTM Johor Bahru, Johor
  • Ami Hassan Che Din Geospatial Imaging and Information Research Group (GI2RG), Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81300 UTM Johor Bahru, Johor
  • Muhammad Zulkarnain Abdul Rahman Tropical Resources Mapping Research Group (TropicalMap), Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81300 UTM Johor Bahru, Johor

DOI:

https://doi.org/10.11113/ijbes.v10.n1.1051

Keywords:

Landslide susceptibility, causal factors, anthropogenic influence, weight of evidence, Bukit Antarabangsa

Abstract

This study sought to assess the influence of causal factors related to anthropogenic activities on landslide occurrence in Bukit Antarabangsa, a township northeast of Kuala Lumpur in Ampang Jaya Municipal Council. Anthropogenic factors were chosen based on the township’s rapid growth, numerous landslide records and intensity of hillside development. The study used a data-driven statistical model to identify factors most predictive of landslide occurrence based on an inventory of 20 landslides, and to evaluate the extent to which susceptibility was driven by factors related to urban development. A total of 17 factors were categorized into four clusters (geological, geomorphological, hydro-tographical and anthropogenic). Factor maps were classified to derive factor classes for each parameter. The dataset was then processed using a weight-of-evidence statistical model to determine the contrast value of each factor class. Contrast value (C) reflects the extent to which each factor class predicts landslide occurrence. The C-weighted factor maps were then combined to derive the landslide susceptibility index (LSI). The LSI enabled visualization of the spatial distribution of susceptibility based on a given combination of factors. Susceptibility maps were prepared for combinations containing only non-anthropogenic parameters and all landslide parameters. The study compared these combinations to determine the influence of anthropogenic factors on total LSI. Similar analyses were conducted to determine the effect of each anthropogenic factor on LSI. The results indicated that lineament density, distance to lineament and distance to road had a significant influence on landslide occurrence. A strong correlation with landslide occurrence was observed for land use/land cover, especially in high susceptibility zones, followed closely by the influence of one distance to road factor class. The results could be useful in planning infrastructure corridors in densely built-up landslide-prone areas.

References

Akter, A., Noor, M. J. M. M., Goto, M., Khanam, S., Parvez, A., & Rasheduzzaman, M. (2019). Landslide Disaster in Malaysia: An Overview. International Journal of Innovative Research and Development, 8(6): 292-302. https://doi.org/10.24940/IJIRD/2019/V8/I6/

JUN19058.

Armas, I. (2012, 2012-02-01). Weights of evidence method for landslide susceptibility mapping. Prahova Subcarpathians, Romania. Natural Hazards, 60(3): 937-950. https://doi.org/10.1007/s11069-011-9879-4.

Chigira, M., Mohamad, Z., Sian, L. C., & Komoo, I. (2011). Landslides in weathered granitic rocks in Japan and Malaysia.

Corominas, J., Van Westen, C., Frattini, P., Cascini, L., Malet, J.-P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M. G., Pastor, M., Ferlisi, S., Tofani, V., Hervás, J., & Smith, J. T. (2013, 2013-11-24). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment. 73(2): 209-263. https://doi.org/10.1007/s10064-013-0538-8.

Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T., & Nishino, K. (2008, 2008-03-01). GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environmental Geology, 54(2): 311-324. https://doi.org/10.1007/s00254-007-0818-3.

Dikshit, A., Sarkar, R., Pradhan, B., Jena, R., Drukpa, D., & Alamri, A. M. (2020, 2020-01-17). Temporal Probability Assessment and Its Use in Landslide Susceptibility Mapping for Eastern Bhutan. Water, 12(1): 267. https://doi.org/10.3390/w12010267.

Edet, A. E., Okereke, C. S., Teme, S. C., & Esu, E. O. (1998, 1998-10-21). Application of remote-sensing data to groundwater exploration: A case study of the Cross River State, southeastern Nigeria. Hydrogeology Journal, 6(3): 394-404. https://doi.org/10.1007/s100400050162.

El Khouli, R. H., Macura, K. J., Barker, P. B., Habba, M. R., Jacobs, M. A., & Bluemke, D. A. (2009, 2009-11-01). Relationship of temporal resolution to diagnostic performance for dynamic contrast enhanced MRI of the breast. Journal of Magnetic Resonance Imaging, 30(5): 999-1004. https://doi.org/10.1002/jmri.21947.

Fan, R., Zhang, L. M., & Shen, P. (2019). Evaluating volume of coseismic landslide clusters by flow direction-based partitioning. Engineering Geology, 260: 105238.

Furze, S., O’Sullivan, A. M., Allard, S., Pronk, T., & Curry, R. A. (2021, 2021-10-20). A High-Resolution, Random Forest Approach to Mapping Depth-to-Bedrock across Shallow Overburden and Post-Glacial Terrain. Remote Sensing, 13(21): 4210. https://doi.org/10.3390/rs13214210.

Getachew, N., & Meten, M. (2021). Weights of evidence modeling for landslide susceptibility mapping of Kabi-Gebro locality, Gundomeskel area, Central Ethiopia. Geoenvironmental Disasters, 8: 1-22. https://doi.org/10.1186/S40677-021-00177-Z/FIGURES/11

Gonzalez-Ollauri, A., & Mickovski, S. B. (2017, 2017-06-01). Hydrological effect of vegetation against rainfall-induced landslides. Journal of Hydrology, 549: 374-387. https://doi.org/10.1016/j.jhydrol.2017.04.014.

Hassaballa, A. A., Althuwaynee, O. F., & Pradhan, B. (2014, 2014-07-01). Extraction of soil moisture from RADARSAT-1 and its role in the formation of the 6 December 2008 landslide at Bukit Antarabangsa, Kuala Lumpur. Arabian Journal of Geosciences, 7(7): 2831-2840. https://doi.org/10.1007/s12517-013-0990-6.

Hervás, J., Günther, A., Reichenbach, P., Chacón, J., Pasuto, A., Malet, J.-P., Trigila, A., Hobbs, P., Maquaire, O., & Tagliavini, F. (2007). Recommendations on a common approach for mapping areas at risk of landslides in Europe. Guidelines for mapping areas at risk of landslides in Europe. JRC Report EUR, 23093: 45-49.

Ilia, I., & Tsangaratos, P. (2016). Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides, 13: 379-397. https://doi.org/10.1007/S10346-015-0576-3/TABLES/8.

Ismail, N. E. H., Taib, S. H., & Abas, F. A. M. (2019, 2019-01-01). Slope monitoring: an application of time-lapse electrical resistivity imaging method in Bukit Antarabangsa, Kuala Lumpur. Environmental Earth Sciences, 78(1):1-15. https://doi.org/10.1007/s12665-018-8019-9.

Iwahashi, J., & Pike, R. J. (2007). Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology, 86(3-4): 409-440.

Izumi, T., Matsuura, S., Mohd Yusof, A. F., Razak, K. A., Moriguchi, S., Kure, S., Jamal, M. H., Motoyama, E., Supar, L. M., Matsuura, S., Mohd Yusof, A. F., Razak, K. A., Moriguchi, S., Kure, S., Jamal, M. H., Motoyama, E., & Supar, L. M. (2019). Disaster Risk Report by IRIDeS, Japan. S. S. G. Universiti Teknologi Malaysia; Selangor Disaster Management Unit, Malaysia. https://www.preventionweb.net/files/69091_disasterriskreportselangorfinal19mb.pdf.

Kazmi, D., Qasim, S., Harahap, I. S. H., & Vu, T. H. (2017, 2017-12-01). Analytical study of the causes of the major landslide of Bukit Antarabangsa in 2008 using fault tree analysis. Innovative Infrastructure Solutions, 2(1): 1-11. https://doi.org/10.1007/s41062-017-0105-4.

Kazmi, D., Qasim, S., Harahap, I. S. H., Baharom, S., Imran, M., & Moin, S. (2016, 2016-12-30). A Study on the Contributing Factors of Major Landslides in Malaysia. Civil Engineering Journal, 2(12): 669-678. https://doi.org/10.28991/cej-2016-00000066.

Khan, H., Shafique, M., Khan, M. A., Bacha, M. A., Shah, S. U., & Calligaris, C. (2019). Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 22: 11-24. https://doi.org/10.1016/J.EJRS.2018.03.004.

Klimeš, J., & Novotný, R. (2011). Landslide susceptibility assessment in urbanized areas: example from flysch Carpathians, Czech Republic. Acta Geodyn Geomater, 8: 443-452.

Lee, M. L., Ng, K. Y., Huang, Y. F., & Li, W. C. (2014). Rainfall-induced landslides in Hulu Kelang area, Malaysia. Natural Hazards, 70: 353-375. https://doi.org/10.1007/S11069-013-0814-8.

Li, G., Lei, Y., Yao, H., Wu, S., & Ge, J. (2017). The influence of land urbanization on landslides: an empirical estimation based on Chinese provincial panel data. Science of the total environment, 595: 681-690.

Majid, N. A., Taha, M. R., & Selamat, S. N. (2020). Historical landslide events in Malaysia1993-2019. Indian Journal of Science and Technology, 13: 3387-3399. https://doi.org/https://doi.org/10.17485/IJST/v13i33.884.

Moresi, F. V., Maesano, M., Collalti, A., Sidle, R. C., Matteucci, G., & Scarascia Mugnozza, G. (2020, 2020-08-12). Mapping Landslide Prediction through a GIS-Based Model: A Case Study in a Catchment in Southern Italy. Geosciences, 10(8): 309. https://doi.org/10.3390/geosciences10080309.

Mousavi, S. Z., Kavian, A., Soleimani, K., Mousavi, S. R., & Shirzadi, A. (2011). GIS-based spatial prediction of landslide susceptibility using logistic regression model. Geomatics, Natural Hazards and Risk, 2(1): 33-50.

Nohani, E., Moharrami, M., Sharafi, S., Khosravi, K., Pradhan, B., Pham, B. T., Lee, S., & Melesse, A. M. (2019). Landslide Susceptibility Mapping Using Different GIS-Based Bivariate Models. Water 11: 1402. https://doi.org/10.3390/W11071402.

Nor Diana, M. I., Muhamad, N., Taha, M. R., Osman, A., & Alam, M. M. (2021, 2021-03-19). Social Vulnerability Assessment for Landslide Hazards in Malaysia: A Systematic Review Study. Land, 10(3): 315. https://doi.org/10.3390/land10030315.

Polykretis, C., Ferentinou, M., & Chalkias, C. (2015). A comparative study of landslide susceptibility mapping using landslide susceptibility index and artificial neural networks in the Krios River and Krathis River catchments (northern Peloponnesus, Greece). Bulletin of Engineering Geology and the Environment, 74(1): 27-45. https://doi.org/10.1007/s10064-014-0607-7.

Raj, J. (2003). Guidelines to prevention of slope failure related disasters in granitic bedrock areas of Malaysia.

Regmi, A. D., Devkota, K. C., Yoshida, K., Pradhan, B., Pourghasemi, H. R., Kumamoto, T., & Akgun, A. (2014). Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7(2): 725-742. https://doi.org/10.1007/s12517-012-0807-z.

Riley, S. J., DeGloria, S. D., & Elliot, R. (1999). Index that quantifies topographic heterogeneity. Intermountain Journal of Sciences, 5(1-4): 23-27.

Saadatkhah, N., Kassim, A., & Lee, L. M. (2015, 2015-02-01). Susceptibility Assessment of Shallow Landslides in Hulu Kelang Area, Kuala Lumpur, Malaysia Using Analytical Hierarchy Process and Frequency Ratio. Geotechnical and Geological Engineering, 33(1): 43-57. https://doi.org/10.1007/s10706-014-9818-8.

Shafie, F. A., Omar, D., & Karuppannan, S. (2013, 2013-09-01). Environmental Health Impact Assessment and Urban Planning. Procedia - Social and Behavioral Sciences, 85: 82-91. https://doi.org/10.1016/j.sbspro.2013.08.340.

Shirvani, Z. (2020, 2020-01-29). A Holistic Analysis for Landslide Susceptibility Mapping Applying Geographic Object-Based Random Forest: A Comparison between Protected and Non-Protected Forests. Remote Sensing, 12(3): 434. https://doi.org/10.3390/rs12030434.

Sonker, I., Tripathi, J. N., & Singh, A. K. (2021). Landslide susceptibility zonation using geospatial technique and analytical hierarchy process in Sikkim Himalaya. Quaternary Science Advances, 4, 100039. https://doi.org/10.1016/J.QSA.2021.100039.

Tian Huat, L., Ali, F., & Shuhaimi Ibrahim, A. (2012). An Investigation on One of the Rainfall-Induced Landslides in Malaysia. Electronic Journal of Geotechnical Engineering, 17, 435-449.

Van Westen, C. J., Rengers, N., & Soeters, R. (2003, 2003-11-01). Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment. Natural Hazards, 30(3), 399-419. https://doi.org/10.1023/b:nhaz.0000007097.42735.9e.

Downloads

Published

2022-12-29

How to Cite

Mafigiri, A., Faisal Abdul Khanan, M., Che Din , A. H., & Abdul Rahman , M. Z. . (2022). Assessing the Influence of Anthropogenic Causal Factors on Landslide Susceptibility in Bukit Antarabangsa, Selangor. International Journal of Built Environment and Sustainability, 10(1), 43–60. https://doi.org/10.11113/ijbes.v10.n1.1051