Enhancing Electricity Consumption Forecasting in Limited Dataset: A Simple Stacked Ensemble Approach Incorporating Simple Linear and Support Vector Regression for Malaysia

Authors

  • Zun Liang Chuan Statistics & Data Analytics Cluster, Centre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan Pahang, Malaysia
  • Shao Jie Ong Faculty of Chemical Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan Pahang, Malaysia
  • Yim Hin Tham Faculty of Chemical Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan Pahang, Malaysia
  • Siti Nur Syamimi Mat Zain Centre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakbo, 26300, Kuantan Pahang, Malaysia
  • Yunalis Amani Abdul Rashid Centre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakbo, 26300, Kuantan Pahang, Malaysia
  • Ainur Naseiha Kamarudin Centre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakbo, 26300, Kuantan Pahang, Malaysia

DOI:

https://doi.org/10.11113/ijbes.v12.n1.1254

Keywords:

Data Science Methodology, Support Vector Regression, Stacked Ensemble Time-Series Algorithm, Electricity Forecasting, Sustainable Development Goals.

Abstract

Rapid population growth and urbanization, coupled with technological advancements, have driven higher electricity demand, predominantly sourced from contributors to climate change. This article introduces a novel artificial intelligence (AI) time-series algorithm, a simple stacked ensemble of simple linear regression (SLR) and Support Vector Regression (SVR), designed to forecast Malaysia’s annual electricity consumption, particularly in scenarios with limited datasets utilizing the Cross Industry Standard Process for Data Mining (CRISP-DM) data science methodology. Analysis revealed that this simple stacked ensemble SVR-based time-series algorithm, employing an -insensitive loss function with a third-degree polynomial kernel, outperformed 71 other SVR-based algorithms, including four time-series algorithms from the previous study. The algorithm’s forecasting insights from the formulated algorithm could guide policymakers in establishing more effective regulations aligned with Sustainable Development Goals (SDGs) such as affordable and clean energy (SDG7), decent work and economic growth (SDG8), industry, innovation and infrastructure (SDG9), sustainable cities and communities (SDG11), responsible consumption and production (SDG12), and climate action (SDG13), which benefit economic, environmental, human, and social.

References

Abad, L. A., Sarabia, S. M., Yuzon, J. M., & Pacis, M. C. (2020). A short-term load forecasting algorithm using support vector regression & artificial neural network method (SVR-ANN). In Proceedings of the 11th IEEE Control and System Graduate Research Colloquium, Shah Alam, Malaysia.

https://doi.org/10.1109/ICSGRC49013.2020.9232630

Brzozowska, J., Pizon, J., Baytikenova, G., Gola, A., Zakimova, A., & Piotrowska. (2023). Data engineering in CRISP-DM process production data-case study. Applied Computer Science, 19(3), 83-95. https://doi.org/10.35784/acs-2023-26

Chong, L. W., Rengasamy, D., Wong, Y. W., & Rajkumar, R. K. (2017). Load prediction using support vector regression. In Proceedings of the 2017 IEEE Region 10 Conference, Penang, Malaysia. https://doi.org/10.1109/TENCON.2017.8228016

Chuan, Z. L., Ismail, N., Yusoff, W. N. S. W., Fam, S-F., & Romlay, M. A. M. (2018). Identifying homogeneous rainfall catchments for non-stationary time series using TOPSIS algorithm and bootstrap k-sample Anderson darling test. International Journal of Engineering & Technology (UAE), 7(4), 3228-3237.

Chuan, Z. L., Deni, S. M., Fam, S-F., & Ismail, N. (2020). The effectiveness of a probabilistic principal component analysis model and expectation maximisation algorithm in treating missing daily rainfall data. Asia-Pacific Journal of Atmospheric Sciences, 56, 119-129. https://doi.org/10.1007/s13143-019-00135-8

Chuan, Z. L., Japashov, N., Yuan, S. K., Qing, T. W., & Ismail, N. (2024). Analyzing enrolment patterns: modified stacked ensemble statistical learning-based approach to educational decision-making. Akademika, 94(2), 232-251. https://doi.org/10.17576/akad-2024-9402-13

Chuan, Z. L., Wei, D. C. T., Aminuddin, A. S. B., Fam, S-F., & Ken, T. L. (in press). Comparison of multiple linear regression and multiple nonlinear regression models for predicting rice production. AIP Conference Proceedings.

Department of Statistics Malaysia. (2022). Gross Domestic Product (GDP) By State 2021. Retrieved from https://www.dosm.gov.my/portal-main/release-content/gross-domestic-product-gdp-by-state-2021 (accessed August 8, 2024).

Department of Statistics Malaysia. (2023). Demographic Statistics Malaysia First Quarter. Retrieved from https://www.dosm.gov.my/uploads/release-content/file_20230510164730.pdf (accessed August 8, 2024).

Energy Commission. (2024). Malaysia energy information hub [Statistics]. Retrieved from https://meih.st.gov.my/statistics

Farsi, B., Amayri, M., Bouguila, N., & Eicker, U. (2021). On short-term load forecasting using machine learning techniques and a novel parallel deep LSTM-CNN approach. IEEE Access, 9, 31191-31212. https://doi.org/10.1109/ACCESS.2021.3060290

Guo, X., Zhao, Q., Zheng, D., Ning, Y., & Gao, Y. (2020). A short-term load forecasting model of multi-scale CNN-LSTM hybrid neural network considering the real-time electricity price. Energy Reports, 6, 1046-1053. https://doi.org/10.1016/j.egyr.2020.11.078

He, X. J. (2018). Crude oil prices forecasting: time series vs. SVR models. Journal of International Technology and Information Management, 27(2), 25-42. https://doi.org/10.58729/1941-6679.1358

He, Y., Xu, Q., Wan, J., & Yang, S. (2016). Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function. Energy, 114, 498-512.

https://doi.org/10.1016/j.energy.2016.08.023

Her, O. Y., Mahmud, M. S. A., Abidin, M. S. Z., Ayop, R., & Buyamin, S. (2022). Artificial neural network based short-term electrical load forecasting. International Journal of Power Electronics and Drive Systems, 13(1), 586-593.

https://doi.org/10.11591/ijpeds.v13.i1.pp586-593

Hong, W-C., Dong, Y., Zhang, W. Y., Chen, L-Y., & Panigrahi, B. K. (2013). Cyclic electric load forecasting by seasonal SVR with chaotic genetic algorithm. International Journal of Electrical Power & Energy Systems, 44(1), 604-614.

https://doi.org/10.1016/j.ijepes.2012.08.010

Jifri, M. H., Hassan, E. E., & Miswan, N. H. (2017). Forecasting performance of time series and regression in modeling electricity load demand. In Proceedings of the 7th IEEE International Conference on System Engineering and Technology 2017, Shah Alam, Malaysia. https://doi.org/10.1109/ICSEngT.2017.8123412

Kamisan, N. A. B., Lee, M. H., Suhartono, S., Hussin, A. G., & Zubairi, Y. Z. (2018). Load forecasting using combination model of multiple linear regression with neural network for Malaysian city. Sains Malaysiana, 47(2), 419-426. http://dx.doi.org/10.17576/jsm-2018-4702-25

Kandananond, K. (2011). Forecasting electricity demand in Thailand with an artificial neural network approach. Energies, 4(8), 1246-1257. https://doi.org/10.3390/en4081246

Khanna, M., & Rao, N. D. (2009). Supply and demand of electricity in the developing world. Annual Review of Resource Economics, 1, 567-595. https://doi.org/10.1146/annurev.resource.050708.144230

Lee, C-M., & Ko, C-N. (2011). Short-term load forecasting using lifting scheme and ARIMA models. Expert Systems with Applications, 38(5), 5902-5911. https://doi.org/10.1016/j.eswa.2010.11.033

Liang, C. Z., Sern, A. L. B., Cheng, T. C., Luen, D. L. K., Japashov, N., & Hiae, T. E. (2024). Empowering Industry 5.0: nurturing STEM tertiary education and careers through Additional Mathematics, in S. N. S. Al-Humairi. (Eds), Utilizing Renewable Energy, Technology, and Education for Industry 5.0. IGI Global, Pennsylvania, pp. 124-125. https://doi.org/10.4018/979-8-3693-2814-9

Massaoudi, M., Refaat, S. S., Chihi, I., Trabelsi, M., Oueslati, F. S., & Abu-Rub, H. (2021). A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for short-term load forecasting. Energy, 214, 118874.

https://doi.org/10.1016/j.energy.2020.118874

Ministry of Finance Malaysia. (2023). Section 1: Economic Performance and Outlook. Retrieved from https://budget.mof.gov.my/pdf/belanjawan2023/economy-fiscal/section1.pdf (accessed August 8, 2024).

Miswan, N. H., Said, R. M., Anuar, S. H. H. (2016). ARIMA with regression model in modelling electricity load demand. Journal of Telecommunication, Electronic and Computer Engineering, 8(12), 113-116.

Miswan, N. H., Said, R. M., Hussin, N. H., Hamzah, K., & Ahmad, E. Z. (2016). Comparative performance of ARIMA and DES models in forecasting electricity load demand in Malaysia. International Journal of Electrical & Computer Sciences, 16(1), 6-9.

Muneer, A., Ali, R. F., Almaghthawi, A., Taib, S. M., Alghamdi, A., & Ghaleb, E. A. A. (2022). Short term residential load forecasting using long short-term memory recurrent neural network. International Journal of Electrical and Computer Engineering, 12(5), 5589-5599. https://doi.org/10.11591/ijece.v12i5.pp5589-5599

Muzir, N. A. Q., Mojumder, M. R. H., Hasanuzzaman, M., & Selvaraj, J. (2022). Challenges of electric vehicles and their prospects in Malaysia: A comprehensive review. Sustainability, 14(14), 8320. https://doi.org/10.3390/su14148320

Nagi, J., Yap, K. S., Nagi, F., Tiong, S. K., & Ahmed, S. K. (2011). A computational intelligence scheme for the prediction of the daily peak load. Applied Soft Computing, 11(8), 4773-4788. https://doi.org/10.1016/j.asoc.2011.07.005

Pei, T. L., Shaari, M. S., & Ahmad, T. S. T. (2016). The effects of electricity consumption on agriculture, service and manufacturing sectors in Malaysia. International Journal of Energy Economics and Policy, 6(3), 401-407.

Ping, Y. Y., & Kamarudin, A. N. (2022). Forecasting the electricity demand in Malaysia using ARIMA model. In Proceedings of Science and Mathematics, Johor, Malaysia.

Rätz, M., Javadi, A. P., Baranski, M., Finkbeiner, K., & Müller, D. (2019). Automated data-driven modeling of building energy systems via machine learning algorithms. Energy and Buildings, 202, 109384. https://doi.org/10.1016/j.enbuild.2019.109384

Razak, F. A., Shitan, M., Hashim, A. H., & Abidin, I. Z. (2009). Load forecasting using time series models. Jurnal Kejuruteraan, 21, 53-62. https://doi.org/10.17576/jkukm-2009-21-06

Rohmah, M. F., Putra, I. K. G. D., Hartati, R. S., & Ardiantoro, L. (2021). Comparison four kernels of SVR to predict consumer price index. Journal of Physics: Conference Series, 1737, 012018. https://doi.org/10.1088/1742-6596/1737/1/012018

Shapi, M. K. M., Ramli, N. A., & Awalin, L. J. (2021). Energy consumption prediction by using machine learning for smart building: case study in Malaysia. Developments in the Built Environment, 5, 100037. https://doi.org/10.1016/j.dibe.2020.100037

Solaun, K., & Cerdá, E. (2019). Climate change impacts on renewable energy generation. A review of quantitative projections. Renewable and Sustainable Energy Reviews, 116, 109415. https://doi.org/10.1016/j.rser.2019.109415

Solano, J. A., Cuesta, D. J. L., Ibáñez, S. F. U., & Coronado-Hernández, J. R. (2022). Predictive models assessment based on CRISP-DM methodology for students performance in Colombia-Saber 11 Test. Procedia Computer Science, 198, 512-517. https://doi.org/10.1016/j.procs.2021.12.278

Solaymani, S. (2022). CO2 emissions and the transport sector in Malaysia. Frontiers in Environmental Science, 9, 774164. https://doi.org/10.3389/fenvs.2021.774164

Sulandari, W., Yudhanto, Y., & Rodrigues, P. C. (2022). The use of singular spectrum analysis and k-means clustering-based bootstrap to improve multistep ahead load forecasting. Energies, 15(16), 5838. https://doi.org/10.3390/en15165838

Tan, C. S., Maragatham, K., & Leong, Y. P. (2013). Electricity energy outlook in Malaysia. IOP Conference Series: Earth and Environmental Science, 16, 012126. https://doi.org/10.1088/1755-1315/16/1/012126

Yean, T. S. (2022). Electric Vehicles in Malaysia: Moving Uphill from Niche to Mass Market. Retrieved from https://fulcrum.sg/electric-vehicles-in-malaysia-moving-uphill-from-niche-to-mass-market/ (accessed August 8, 2024).

Downloads

Published

2025-01-10

How to Cite

Chuan, Z. L., Ong , S. J., Tham, Y. H., Mat Zain, S. N. S., Abdul Rashid, Y. A., & Kamarudin, A. N. (2025). Enhancing Electricity Consumption Forecasting in Limited Dataset: A Simple Stacked Ensemble Approach Incorporating Simple Linear and Support Vector Regression for Malaysia. International Journal of Built Environment and Sustainability, 12(1), 9–21. https://doi.org/10.11113/ijbes.v12.n1.1254