Data Monetization Strategies: The Construction Industry Market Analysis

Authors

  • Zafira Nadia Maaz Department of Quantity Surveying, Universiti Malaya, 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
  • Mohamad Zahierruden Ismail Department of Quantity Surveying, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/ijbes.v11.n3.1351

Keywords:

Big Data Analytics, Data Monetization, Construction Project Management, Construction IT

Abstract

Data monetization is leveraging data to obtain economic benefits. In the context of Big Data Analytics (BDA), data serves as a fundamental asset, enabling the transformation into valuable insights throughout various construction phases. Unfortunately, there is lack of studies focusing on data monetization within the construction industry, given the unique supply and demand characteristics among construction stakeholders. This study aims to address the objective of identifying data monetization strategies applicable to the construction industry, particularly for data sellers and data buyers. Data was gathered through a quantitative survey among 100 construction practitioners in Malaysia, encompassing developers, contractors, consultants, government agencies, technology providers, and academia. Respondents were further categorized into data sellers and data buyers. The data were analyzed using mean analysis, t-test and Spearman's rank correlation coefficient. The study identified six data monetization strategies, comprising 19 determinants. The analysis revealed high preference on all data monetization strategies and moderate differences in the preferred strategies between data sellers and buyers. Significant differences were found in 3 determinants which are (1) trading data to facilitate decision-making, (2) trading data for construction reports, benchmarks, and indices, and (3) selling visualized data on real-time platforms. The t-test indicated that data sellers are more inclined towards the three strategies for effective monetization. Furthermore, Spearman’s correlation coefficient revealed the 3 determinants also positively influence another 3 determinants of (1) data wrapping to reflect better service from data provider, (2) buying raw data with its inherit information and (3) monetizing internal data to optimize organization’s work process. The insights enable stakeholders to implement mechanisms that foster data monetization within project cultures accelerating BDA undertakings. Future recommendations include using larger sample sizes to enhance generalizability and to explore more areas such as construction contracts, cost, health, and safety.

References

Abioye, S. O., Oyedele, L. O., Akanbi, L., Ajayi, A., Delgado, J. M. D., Bilal, M., Akinade, O. O., & Ahmed, A. (2021). Artificial Intelligence in the Construction Industry: A Review of Present Status, Opportunities and Future Challenges. Journal of Building Engineering, 44. https://doi.org/10.1016/j.jobe.2021.103299

Acciarini, C., Cappa, F., Boccardelli, P., & Oriani, R. (2023). How can organizations leverage big data to innovate their business models? A systematic literature review. Technovation, 123, 102713. https://doi.org/10.1016/j.technovation.2023.102713

Adel, K., Elhakeem, A., & Marzouk, M. (2023). Decentralized System for Construction Projects Data Management Using Blockchain and Ipfs. Journal of Civil Engineering and Management, 29(4), 342–359. https://doi.org/10.3846/jcem.2023.18646

Ahmed, V., Tezel, A., Aziz, Z., & Sibley, M. (2017). The future of Big Data in facilities management: opportunities and challenges. Facilities, 35(13–14), 725–745. https://doi.org/10.1108/F-06-2016-0064

Akinosho, T. D., Oyedele, L. O., Bilal, M., Ajayi, A. O., Delgado, M. D., Akinade, O. O., & Ahmed, A. A. (2020). Deep learning in the construction industry: A review of present status and future innovations. Journal of Building Engineering, 32. https://doi.org/10.1016/j.jobe.2020.101827

Alfaro, E., Bressan, M., Girardin, F., Murillo, J., Someh, I., & Wixom, B. H. (2019). BBVA’s data monetization journey. MIS Quarterly Executive, 18(2), 111–128. https://doi.org/10.17705/2msqe.00011

Arcadis. (2024, March 26). Construction cost Handbook. Arcadis. https://www.arcadis.com/en/knowledge-hub/perspectives/asia/research-and-publications/construction-cost-handbook

Arent van’t Spijker. (2014). The New Oil: Using Innovative Business Models to turn Data Into Profit (1st ed.). Technics Publications.

Ayodele, T. O., & Kajimo-Shakantu, K. (2022). Challenges and drivers to data sharing among stakeholders in the South African construction industry. Journal of Engineering, Design and Technology, 20(6), 1698–1715. https://doi.org/10.1108/JEDT-02-2021-0074

Bilal, M., Oyedele, L. O., Akinade, O. O., Ajayi, S. O., Alaka, H. A., Owolabi, H. A., Qadir, J., Pasha, M., & Bello, S. A. (2016). Big data architecture for construction waste analytics (CWA): A conceptual framework. Journal of Building Engineering, 6, 144–156. https://doi.org/10.1016/j.jobe.2016.03.002

Bilal, M., Oyedele, L. O., Kusimo, H. O., Owolabi, H. A., Akanbi, L. A., Ajayi, A. O., Akinade, O. O., & Davila Delgado, J. M. (2019). Investigating profitability performance of construction projects using big data: A project analytics approach. Journal of Building Engineering, 26. https://doi.org/10.1016/j.jobe.2019.100850

Bilal, M., Oyedele, L. O., Qadir, J., Munir, K., Ajayi, S. O., Akinade, O. O., Owolabi, H. A., Alaka, H. A., & Pasha, M. (2016). Big Data in the construction industry: A review of present status, opportunities, and future trends. In Advanced Engineering Informatics (Vol. 30, Issue 3, pp. 500–521). Elsevier Ltd. https://doi.org/10.1016/j.aei.2016.07.001

Bohé, A., Hong, M., Macdonald, C., & Paice, N. (2013). Data Monetization in the Age of Big Data. https://www.accenture.com/in-en/case-studies/communications-media/manzoni

Boyes, H. (2015). Security, Privacy, and the Built Environment.

Braun, T., Fung, B. C. M., Iqbal, F., & Shah, B. (2018). Security and privacy challenges in smart cities. Sustainable Cities and Society, 39, 499–507. https://doi.org/10.1016/j.scs.2018.02.039

Building Cost Information Service. (2024, March 26). Unlocking Data. Building Cost Information Service. https://bcis.co.uk/

Building Cost Information Services Malayia. (2024, March 26). N3C. Building Cost Information Services Malayia. https://n3c.cidb.gov.my/n3c/index.php

Chaurasia, S., & Verma, S. (2020). Strategic Determinants of Big Data Analytics in the AEC Sector: A Multi-Perspective Framework. Construction Economics and Building, 20(4), 63–81. https://doi.org/doi.org/10.5130/AJCEB.v20i4.6649

Construction Industry Development Board. (2020). Construction 4.0 Strategic Plan (2021-2025) Next Revolution of the Malaysian Construction Industry.

Dixon, T., Wetering, J. van de, Sexton, M., Lu, S.-L., Williams, D., Duman, D. U., & Chen, X. (2017). Smart Cities, Big Data and the Built Environment: What’s Required? www.rics.org

Domnina, S. V., Savoskina, E. V., & Shekhova, N. V. (2016). On Innovative Decisions in the Investment-construction Cycle. Procedia Engineering, 153, 741–746. https://doi.org/10.1016/j.proeng.2016.08.236

Faroukhi, A. Z., Alaoui, I. El, Gahi, Y., & Amine, A. (2020). An Adaptable Big Data Value Chain Framework for End-to-End Big Data Monetization. Big Data and Cognitive Computing, 4(4), 1–27. https://doi.org/10.3390/bdcc4040034

Faroukhi, A. Z., El Alaoui, I., Gahi, Y., & Amine, A. (2020). Big data monetization throughout Big Data Value Chain: a comprehensive review. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-019-0281-5

Fazeli, A., Dashti, M. S., Jalaei, F., & Khanzadi, M. (2021). An integrated BIM-based approach for cost estimation in construction projects. Engineering, Construction and Architectural Management, 28(9), 2828–2854. https://doi.org/10.1108/ECAM-01-2020-0027

Gad, G. M., & Shane, J. S. (2014). Trust in the Construction Industry: A Literature Review. Construction Research Congress 2014, 2136–2145. https://doi.org/10.1061/9780784413517.217

Gbadamosi, A. Q., Oyedele, L., Mahamadu, A. M., Kusimo, H., Bilal, M., Davila Delgado, J. M., & Muhammed-Yakubu, N. (2020). Big data for Design Options Repository: Towards a DFMA approach for offsite construction. Automation in Construction, 120. https://doi.org/10.1016/j.autcon.2020.103388

Ghasemaghaei, M., Ebrahimi, S., & Hassanein, K. (2018). Data analytics competency for improving firm decision making performance. The Journal of Strategic Information Systems, 27(1), 101–113. https://doi.org/10.1016/j.jsis.2017.10.001

Ghorbany, S., Noorzai, E., & Yousefi, S. (2023). BIM-based solution to enhance the performance of public-private partnership construction projects using copula bayesian network. Expert Systems with Applications, 216. https://doi.org/10.1016/j.eswa.2023.119501

Günther, W. A., Rezazade Mehrizi, M. H., Huysman, M., & Feldberg, F. (2017). Debating big data: A literature review on realizing value from big data. Journal of Strategic Information Systems, 26(3), 191–209. https://doi.org/10.1016/j.jsis.2017.07.003

Hanafizadeh, P., & Harati Nik, M. R. (2020). Configuration of Data Monetization: A Review of Literature with Thematic Analysis. Global Journal of Flexible Systems Management, 21(1), 17–34. https://doi.org/10.1007/s40171-019-00228-3

Hartmann, P. M., Zaki, M., Feldmann, N., & Neely, A. (2016). Capturing value from big data – a taxonomy of data-driven business models used by start-up firms. International Journal of Operations & Production Management, 36(10), 1382–1406. https://doi.org/10.1108/IJOPM-02-2014-0098

Hashim, M. A., Che Ibrahim, C. K. I., Jaafar, N. A. L., Kordi, N. E., Haron, A. T., & Umeokafor, N. (2024). Building data driven culture for digital competitiveness in construction industry: a theoretical exploration. International Journal of Construction Management, 1–13. https://doi.org/10.1080/15623599.2024.2322237

Huang, Y., Shi, Q., Zuo, J., Pena-Mora, F., & Chen, J. (2021). Research Status and Challenges of Data-Driven Construction Project Management in the Big Data Context. Advances in Civil Engineering, 2021. https://doi.org/10.1155/2021/6674980

Inoua, S. M., & Smith, V. L. (2020). The Classical Theory of Supply and Demand (ESI Working Paper 20-11).

Ismail, S. A., Bandi, S., & Maaz, Z. N. (2018). An Appraisal into the Potential Application of Big Data in the Construction Industry. International Journal of Built Environment and Sustainability, 5(2). https://doi.org/10.11113/ijbes.v5.n2.274

Jiang, J., & Gallupe, R. B. (2015). Environmental Scanning and Business Insight Capability: The Role of Business Analytics and Knowledge Integration. Twenty-First Americas Conference on Information Systems, 1–28.

Khalfan, M. M. A., McDermott, P., & Swan, W. (2007). Building trust in construction projects. Supply Chain Management: An International Journal, 12(6), 385–391. https://doi.org/10.1108/13598540710826308

Kiu, M. S., Chia, F. C., & Wong, P. F. (2020). Exploring the potentials of blockchain application in construction industry: a systematic review. International Journal of Construction Management , 22(15), 2931–2940. https://doi.org/https://doi.org/10.1080/15623599.2020.1833436

Koseleva, N., & Ropaite, G. (2017). Big Data in Building Energy Efficiency: Understanding of Big Data and Main Challenges. Procedia Engineering, 172, 544–549. https://doi.org/10.1016/j.proeng.2017.02.064

Laitila, M. (2017). Data monetization: Utilizing data as an asset to generate new revenues for firms. Aalto University.

LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2010, December 21). Big Data, Analytics and the Path From Insights to Value. MIT Sloan Management Review. https://sloanreview.mit.edu/article/big-data-analytics-and-the-path-from-insights-to-value/

Lewis, A., & McKone, D. (2016, May 10). So Many M&A Deals Fail Because Companies Overlook This Simple Strategy. Harvard Business Review.

Liu, C.-H., & Chen, C.-L. (2015). A Review Of Data Monetization: Strategic Use Of Big Data. 15th International Conference on Electronic Business, 12–18. https://aisel.aisnet.org/iceb2015

Lu, W., Webster, C., Peng, Y., Chen, X., & Chen, K. (2018). Big Data in Construction Waste Management: Prospects and Challenges. Detritus, 4(December), 129–139. https://doi.org/10.31025/2611-4135/2018.13737

Lu, Y., & Zhang, J. (2021). Bibliometric analysis and critical review of the research on big data in the construction industry. Engineering, Construction and Architectural Management. https://doi.org/10.1108/ECAM-01-2021-0005

Maaz, Z. N., Bandi, S., & Amirudin, R. (2018). A contextual parsing of big data values to quantity surveyors. International Journal Of Built Environment And Sustainability, 5(3), 241–250.

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. www.mckinsey.com/mgi.

Mauri, M. (2022). Information Visualization for the Construction Industry (pp. 185–206). https://doi.org/10.1007/978-3-030-82430-3_8

Mehta, S., Dawande, M., Janakiraman, G., & Mookerjee, V. (2019). How to Sell a Dataset? Pricing Policies for Data Monetization. Proceedings of the 2019 ACM Conference on Economics and Computation, 679–679. https://doi.org/10.1145/3328526.3329587

Mehta, S., Dawande, M., Janakiraman, G., & Mookerjee, V. (2022). An Approximation Scheme for Data Monetization. Production and Operations Management, 31(6), 2412–2428. https://doi.org/10.1111/poms.13676

Mendoza, R. M. (2023). Project Management Skills, People Management Skills, and Operational Excellence of Construction Project Managers in Private Construction Management Services. International Journal of Social Science and Education Research Studies, 03(06), 1019–1038. https://doi.org/10.55677/ijssers/v03i6y2023-08

Meng, Q., Peng, Q., Li, Z., & Hu, X. (2022). Big Data Technology in Construction Safety Management: Application Status, Trend and Challenge. Buildings, 12(533). https://doi.org/https://doi.org/10.3390/ buildings12050533

Ministry of Works Malaysia. (2024, March 26). KKR Publications. Ministry of Works Malaysia. https://www.kkr.gov.my/en/gallery/list-kkr-publications?page=0

Moro-Visconti, R. (2020). Big Data Valuation. In The Valuation of Digital Intangibles (pp. 345–360). Springer International Publishing.

Moura, J., & Serrão, C. (2015). Security and Privacy Issues of Big Data. In Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence (pp. 20–52). IGI Global.

Najjar, M. S., & Kettinger, W. J. (2013). Data Monetization: Lessons from a Retailer’s Journey. MIS Quarterly Executive, 12(4), 213–225.

Nash, S., Chinyio, E., Gameson, R., & Suresh, S. (2010). The Dynamism of Stakeholders’ Power in Construction Projects. Proceeding 26th Annual ARCOM Conference, 471–480.

Ngo, J., Hwang, B., & Zhang, C. (2020). Factor-based big data and predictive analytics capability assessment tool for the construction industry. Automation in Construction, 110, 1–12. https://doi.org/10.1016/j.autcon.2019.103042

O’brien, W., London, K., & Vrijhoef, R. (2004). Construction supply chain modeling: a research review and interdisciplinary agenda. ICFAI Journal of Operations Management, 3(3), 64–84. https://hdl.handle.net/10536/DRO/DU:30020890

Ofulue, J., & Benyoucef, M. (2022). Data monetization: insights from a technology-enabled literature review and research agenda. Management Review Quarterly. https://doi.org/10.1007/s11301-022-00309-1

Owolabi, H. A., Bilal, M., Oyedele, L. O., Alaka, H. A., Ajayi, S. O., & Akinade, O. O. (2020). Predicting Completion Risk in PPP Projects Using Big Data Analytics. IEEE Transactions on Engineering Management, 67(2), 430–453. https://doi.org/10.1109/TEM.2018.2876321

Parvinen, P., Pöyry, E., Gustafsson, R., Laitila, M., & Rossi, M. (2020). Advancing data monetization and the creation of data-based business models. Communications of the Association for Information Systems, 47, 25–49. https://doi.org/10.17705/1CAIS.04702

Patel, T., & Patel, V. (2020). Data Privacy in Construction Industry by Privacy-Preserving Data Mining (PPDM) Approach. Asian Journal of Civil Engineering, 21(3), 505–515. https://doi.org/10.1007/s42107-020-00225-3

Preidel, C., Borrmann, A., Oberender, C., & Tretheway, M. (2016). Seamless integration of common data environment access into BIM authoring applications: The BIM integration framework. In S. Christodoulou & R. Scherer (Eds.), eWork and eBusiness in Architecture, Engineering and Construction: ECPPM 2016 (1st Edition). CRC Press.

Public Works Department Malaysia. (2024, March 26). Technical Documents. Public Works Department Malaysia. https://www.jkr.gov.my/my/page/dokumen-teknikal-0

Qian, X. (Alice), & Papadonikolaki, E. (2020). Shifting trust in construction supply chains through blockchain technology. Engineering, Construction and Architectural Management, 28(2), 584–602. https://doi.org/10.1108/ECAM-12-2019-0676

Raddats, C., Naik, P., & Ziaee Bigdeli, A. (2022). Creating value in servitization through digital service innovations. Industrial Marketing Management, 104, 1–13. https://doi.org/10.1016/j.indmarman.2022.04.002

Radl, J., & Kaiser, J. (2019). Benefits of Implementation of Common Data Environment (CDE) into Construction Projects. IOP Conference Series: Materials Science and Engineering , 1–4. https://doi.org/doi:10.1088/1757-899X/471/2/022021

Ram, J., Afridi, N. K., & Khan, K. A. (2019). Adoption of Big Data Analytics in Construction: Development of a Conceptual Model. Built Environment Project and Asset Management, 9(4), 564–579. https://doi.org/10.1108/BEPAM-05-2018-0077

Reyes Veras, P., Renukappa, S., & Suresh, S. (2022). Awareness of Big Data concept in the Dominican Republic construction industry: an empirical study. Construction Innovation, 22(3), 465–486. https://doi.org/10.1108/CI-05-2021-0090

Reyes-Veras, P. F., Renukappa, S., Suresh, S., & Algahtani, K. (2022). Strategies for Implementing Big Data Concept in the Construction Industry of the Dominican Republic. https://wlv.openrepository.com/handle/2436/624487

Ritala, P., Keränen, J., Fishburn, J., & Ruokonen, M. (2024). Selling and monetizing data in B2B markets: Four data-driven value propositions. Technovation, 130. https://doi.org/10.1016/j.technovation.2023.102935

Sawhney, A., & Knight, A. (2023). Digitalisation in Construction Report 2023. www.rics.org

Schober, P., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia and Analgesia, 126(5), 1763–1768. https://doi.org/10.1213/ANE.0000000000002864

Shubham Shubham, Saloni Saloni, & Sidra-Tul-Muntaha. (2023). Optimizing construction processes and improving building performance through data engineering and computation. World Journal of Advanced Research and Reviews, 18(1), 390–398. https://doi.org/10.30574/wjarr.2023.18.1.0614

Tan, Y. J., Maaz, Z. N., Bandi, S., & Palis, P. A. (2023). Common Data Environment: Bridging the Digital Data Sharing Gap Among Construction Organizations (pp. 333–342). https://doi.org/10.1007/978-3-031-25274-7_27

Tanga, O., Akinradewo, O., Aigbavboa, C., Oke, A., & Adekunle, S. (2022). Data Management Risks: A Bane of Construction Project Performance. Sustainability (Switzerland), 14(19). https://doi.org/10.3390/su141912793

Taylan, O., Kabli, M. R., Porcel, C., & Herrera-Viedma, E. (2017). Contractor Selection for Construction Projects Using Consensus Tools and Big Data. International Journal of Fuzzy Systems.

Teece, D. J., & Linden, G. (2017). Business models, value capture, and the digital enterprise. Journal of Organization Design, 6(1), 8. https://doi.org/10.1186/s41469-017-0018-x

Thomas, L. D. W., & Leiponen, A. (2016). Big Data Commercialization. IEEE Engineering Management Review, 44(2), 74–90. https://doi.org/10.1109/EMR.2016.2568798

Vaske, J. J., Beaman, J., & Sponarski, C. C. (2017). Rethinking Internal Consistency in Cronbach’s Alpha. Leisure Sciences, 39(2), 163–173. https://doi.org/10.1080/01490400.2015.1127189

Wixom, B. H. (2014, August 21). Cashing in Your Data. MIT Centre for Information Systems Research. https://cisr.mit.edu/publication/2014_0801_DataMonetization_Wixom

Wixom, B. H., & Ross, J. W. (2018). How to Monetize Your Data. In How to Go Digital (pp. 39–48). The MIT Press. https://doi.org/10.7551/mitpress/11633.003.0009

Woerner, S. L., & Wixom, B. H. (2015). Big data: Extending the business strategy toolbox. Journal of Information Technology, 30(1), 60–62. https://doi.org/10.1057/jit.2014.31

Woroch, R., & Strobel, G. (2022). Show me the Money: How to monetize data in data-driven business models? Wirtschaftsinformatik 2022 Proceedings, 1–16. https://aisel.aisnet.org/wi2022

Wu, L., & Abourizk, S. M. (2021). Towards Construction ’ S Digital Future : A Roadmap For Enhancing Csce 2021 Annual Conference Towards Construction ’ S Digital Future : A Roadmap For. CSCE 2021 Annual Conference Inspired, May. https://doi.org/10.13140/RG.2.2.29564.67205

Wu, Z., Chen, C., Cai, Y., Lu, C., Wang, H., & Yu, T. (2019). BIM-Based Visualization Research in the Construction Industry: A Network Analysis. International Journal of Environmental Research and Public Health, 16(18), 3473. https://doi.org/10.3390/ijerph16183473

Yuan, Z., Yu, X., Jiang, Y., Sun, J., Liu, Z., & Li, B. (2024). Current status and governance of data assets monetization in the global maritime industry: A comparative study of the United States, Europe, and China. Ocean and Coastal Management, 251. https://doi.org/10.1016/j.ocecoaman.2024.107078

Zhang, X., Yue, W. T., Yu, Y., & Zhang, X. (2023). How to monetize data: An economic analysis of data monetization strategies under competition. Decision Support Systems, 173. https://doi.org/10.1016/j.dss.2023.114012

Downloads

Published

2024-09-08

How to Cite

Maaz, Z. N., & Ismail, M. Z. (2024). Data Monetization Strategies: The Construction Industry Market Analysis. International Journal of Built Environment and Sustainability, 11(3), 103–119. https://doi.org/10.11113/ijbes.v11.n3.1351