Case Studies on the Impacts of Climate Change on Historical Buildings in Northern Cyprus
DOI:
https://doi.org/10.11113/ijbes.v7.n1.432Keywords:
Buildings, greenhouse gases, climate, deterioration, energyAbstract
The changing in climatic conditions is one of the most significant issues in the twenty-first century. The literature suggests various approaches for the understanding of the harmful influences of climate change. Climate change is caused by increases in atmospheric greenhouse gases, deforestation, altering watercourses and human actions with tragic effect on the environment has turned into certainty, as that the procedure may not be over in a short period or medium period. Climate observations showed that climate change occurrence had unfavorable impacts on society and mostly on built environment. The most vulnerable buildings are the historical buildings. The impact of climate change on historical buildings should be studied very carefully to determine the meteorological parameters and changes which are the most critical for the protection of the cultural heritage. Prediction of the effects of climate change on built cultural heritage for the next 100 years is necessary to take every step to protect the historical buildings that are likely to be worst affected by climate change effects. Against this background, this paper reviews the physical and chemical deteriorations of historical buildings and changing energy consumption of historic buildings. The research exposed the risk to lose cultural heritage and rising energy demand in the Northern part of Cyprus as a case study. Structural engineers and architects should consider the dominant forces of climate change to protect the historical buildings but also to construct sustainable, feasible and durable buildings for future projects.
References
AK, A. (2016). Climate Change and its Impact on Monumental and Historical Buildings towards Conservation and Documentation Ammon temple, Siwa Oasis, Egypt. Journal of Earth Science and Climatic Change, 07(03)
BBC.(2018). https://www.bbc.co.uk/bitesize/guides/zyd64qt/revision/4. Retrieved on 30 December 2018.
Chaturvedi, V., Kim, S,, Smith, S,, Clarke, L., Yuyu, Z., Kyle, P., Patel, P. (2013). Model evaluation and hindcasting: An experiment with an integrated assessment model. Energy, 61: 479-49
Department of Meteorology. (2019).
http://www.moa.gov.cy/moa/ms/ms.nsf/DMLcyclimate_en/DMLcyclimate_en?OpenDocument. Retrieved on 20 December 2019.
TRNC State Planning Organization (SPO). http://www.devplan.org/Ist_yillik/IST-YILLIK-2017.pdf. Retrieved on 20 December 2019.
Dirks, J., Gorrissen, W., Hathaway, J., Skorski, D., Scott, M., Pulsipher, T., Huang, M., Liu, Y., Rice, J. (2015). Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach. Energy, 79: 20-32
Gassar, A. A., Yun, G.Y. (2017). Energy Saving Potential of PCMs in Buildings under Future Climate Conditions. Applied Sciences, 7(12): 1219
Heier, J., Bales, C., Martin, V. (2015). Combining thermal energy storage with buildings – a review. Renewable and Sustainable Energy Reviews,42: 1305-1325
Hurlimann, A., Browne, G., Warren-Myers, G., Francis, V. (2018). Barriers to climate change adaptation in the Australian construction industry – Impetus for regulatory reform. Building and Environment, 137: 235-245
Hussain, S., Dinesh, R., Roseline, A., Dhivya, S., Kalaiselvam, S. (2017). Enhanced thermal performance and study the influence of subcooling on activated carbon dispersed eutectic PCM for cold storage applications. Energy and Buildings, 143: 17-24
Jiang, A., Zhu, Y., Elsafty, A., Tumeo, M. (2017). Effects of Global Climate Change on Building Energy Consumption and Its Implications in Florida. International Journal of Construction Education and Research, 14(1): 22-45
Kaufmann, R., Gopal, S., Tang, X., Raciti, S., Lyons, P., Geron, N., Craig, F. (2013). Revisiting the weather effect on energy consumption: Implications for the impact of climate change. Energy Policy, 62: 1377-1384
Kraucunas, I., Clarke, L., Dirks, J., Hathaway, J., Hejazi, M., Hibbard, K., Huang, M., Jin, C., Kintner-Meyer, M., van Dam, K. (2014). Investigating the nexus of climate, energy, water, and land at decision-relevant scales: the Platform for Regional Integrated Modeling and Analysis (PRIMA). Climatic Change, 129(3-4):573-588
Leissner, J., Kilian, R., Kotova, L., Jacob, D., Mikolajewicz, U., Broström, T., Ashley-Smith, J., Schellen, H., Martens, M., van Schijndel, J. (2015). Climate for Culture: assessing the impact of climate change on the future indoor climate in historic buildings using simulations. Heritage Science, 3(1)
Marin, P., Saffari, M., de Gracia, A., Zhu, X., Farid, M., Cabeza, L., Ushak, S. (2016). Energy savings due to the use of PCM for relocatable lightweight buildings passive heating and cooling in different weather conditions. Energy and Buildings, 129: 274-283
Ozerdem, O. C., Biricik, S. (2011). Overview of energy system and major power quality problems in North Cyprus. Technical and physical problems of engineering, 8(3): 2077-3528
Saffari, M., de Gracia, A., Ushak, S., Cabeza, L. (2016). Economic impact of integrating PCM as a passive system in buildings using Fanger comfort model. Energy and Buildings 2016, 112:159-172
Sedlbauer, K. (2001). Prediction of mold fungus formation on the surface of inside building components. Ph.D.Thesis, Fraunhofer Institute for Building Physics.
Shaglouf, M., Al-Tahar, F., Ibrahim, S., Elayatt, AK. (2016). Influences of atmospheric corrosion caused by air pollutants on materials and properties. International Journal of Recent Engineering Research and Development 2016, 1(2): 2455-8761.
Soares, N., Gaspar, A., Santos, P., Costa, J. (2014). Multi-dimensional optimization of the incorporation of PCM-drywalls in lightweight steel-framed residential buildings in different climates. Energy and Buildings, 70: 411-421
Tavukçuoğlu, A. (2000). Taş Yapılarda Malzeme Bozulmalarının Görsel Analizi – Ağzıkarahan Örneği. Yapı Dergisi, 100-106. Ankara, Turkey: Yapı Endüstri Merkezi (YEM).
Vicente, R., Silva, T. (2014). Brick masonry walls with PCM microcapsules: An experimental approach. Applied Thermal Energy, 67(1-2): 24-34
Viitanen, H., Ojanen, T. (2007). An improved model to predict mold growth in building materials. ASHRAE Standards.
Wang, X., Chen, D., Reni Z. (2010). Assessment of climate change impact on residential building heating and cooling energy requirement in Australia. Building and Environment, 45(7): 1663-1682.
Watkins, R., Palmer, J., Kolokotroni, M., Littlefair, P. (2002). The balance of the annual heating and cooling demand within the London urban heat island. Building Services Engineering Research and Technology, 23(4): 207-213
World Energy.(2019). https://www.worldenergy.org/assets/downloads/WEInsights-Brief-Global-Energy-Scenarios-Comparison-Review-R02.pdf. Retrieved on 15 December 2019
Yaldız, E. (2010). Climate Effects on Monumental Buildings. Balwois Conference, 25-29 May, Ohrid, Republic of Macedonia
International Energy Agency (IEA), 2017.
https://www.worldgbc.org/sites/default/files/UNEP%20188_GABC_en%20%28web%29.pdf. Retrieved on 20 December 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in International Journal of Built Environment and Sustainability belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions or any other reproductions of similar nature.
Authors who publish with this journal agree to the following terms:
- This Journal applies Creative Commons Licenses of CC-BY-NC-SA
- Authors retain copyright and grant the journal right of publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).