Window Ventilation Behavior for Overheating Evaluation: Residents’ Survey and Derived Ventilation Profiles

Authors

  • David Schiela Leibniz Institute of Ecological Urban and Regional Development, Weberplatz 1, 01217 Dresden, Germany
  • Christoph Schünemann Leibniz Institute of Ecological Urban and Regional Development, Weberplatz 1, 01217 Dresden, Germany

DOI:

https://doi.org/10.11113/ijbes.v8.n3.852

Keywords:

Overheating, heat resilience, residential buildings, window ventilation behavior, questionnaire

Abstract

Studies have shown that night-time ventilation can greatly reduce indoor overheating during hot spells. Yet the relevant literature is largely silent on which specific time resolved window ventilation behavior can be applied for investigations with building performance simulations. The aim of this article is to close this gap in knowledge. Specifically, a survey was carried out in two German cities Dresden and Erfurt regarding window ventilation behavior on hot (outside temperature > 30 °C) and average summer days to determine how, when and for how long ventilation is actually implemented in residential buildings. The results show that approximately 80 % of respondents ventilate their living rooms and bedrooms mainly at night and/or in the early morning on both hot and average summer days – although the individual window ventilation behavior may vary significantly. The details provided by the respondents were processed to create characteristic window ventilation profiles in order to reflect the individual user behavior more realistically in future studies, especially for overheating evaluations by building performance simulation.

References

Sommer 2019 - Sonnenscheinreich und niederschlagsarm - neue Temperaturrekorde, Pressemitteilung. World Wide Web: https://www.dwd.de/DE/presse/pressemitteilungen/DE/2019/20190830_deutschlandwetter_sommer2019.pdf?__blob=publicationFile&v=2. Accessed 7/19/2021.

Deutsches Institut für Normung e. V. (DIN) (2013). DIN 4108-2:2013-02 Wärmeschutz und Energie-Einsparung in Gebäuden - Teil 2: Mindestanforderungen an den Wärmeschutz. Berlin: Beuth Verlag.

Fabi, V., Andersen, R. V., Corgnati, S. and Olesen, B. W. (2012). Occupants’ window opening behaviour: A literature review of factors influencing occupant behaviour and models. Building and Environment, 58: 188–198. https://doi.org/10.1016/j.buildenv.2012.07.009.

Ferk, H., Rüdisser, D., Riederer, G. and Majdanac, E. (2016). Sommerlicher Wärmeschutz im Klimawandel - Einfluss der Bauweise und weiterer Faktoren. Zuschnitt Attachment – Sonderthemen im Bereich Holz, Holzwerkstoff und Holzbau, 1–22.

Fosas, D., Coley, D. A., Natarajan, S., Herrera, M., Fosas de Pando, M. and Ramallo-Gonzalez, A. (2018). Mitigation versus adaptation: Does insulating dwellings increase overheating risk? Building and Environment, 143: 740–759. https://doi.org/10.1016/j.buildenv.2018.07.033.

Hall, M. (2004). Untersuchungen zum thermisch induzierten Luftwechselpotential von Kippfenstern. Bauphysik 26 (2004), Heft 3, 109-115. Berlin: Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG.

Hoffmann, S. and Kheybari, A. G. (2021). Untersuchungen zum sommerlichen Wärmeschutz - Teil 1: Vergleich der Nachweisverfahren unter Berücksichtigung zukünftiger Klimadaten. Bauphysik 43 (2021), Heft 1, 27–35.

Intergovernmental Panel on Climate Change (IPCC) (2014). Climate Change 2014 - Impacts, Adaptation and Vulnerability - Part B: Regional Aspects.

Ivankovic, G., Hafellner, H. and Kautsch, P. (2019). Berechnung des sommerlichen Wärmeschutzes. Bauphysik 41 (2019), Heft 1, 7–16.

Kunze, S. (2019). Sommerliche Überhitzung in Wohngebäuden – Baukonstruktive und haustechnische Anpassungsmaßnahmen. In: L. Sieber, ed., Tagungsband zum 4. BIH-Treffen 2019, Interdisziplinäre Forschung - Chancen und Herausforderungen, Fachtagung für wissenschaftlich Beschäftigte und Nachwuchskräfte an Bauingenieur-Institutionen deutscher Hochschulen, 19–28.

Mavrogianni, A., Davies, M., Taylor, J., Chalabi, Z., Biddulph, P., Oikonomou, E., Das, P. and Jones, B. M. (2014). The impact of occupancy patterns, occupant-controlled ventilation and shading on indoor overheating risk in domestic environments. Building and Environment, 78: 183–198. https://doi.org/10.1016/j.buildenv.2014.04.008.

Mavrogianni, A., Pathan, A., Oikonomou, E., Biddulph, P., Symonds, P. and Davies, M. (2016). Inhabitant actions and summer overheating risk in London dwellings. Building Research & Information, 45 (1-2): 119–142. https://doi.org/10.1080/09613218.2016.1208431.

Porritt, S., Cropper, P., Shao, L. and Goddier, C. I. (2013). Heat wave adaptations for UK dwellings and development of a retrofit toolkit. International Journal of Disaster Resilience in the Build Environment, 4 (3): 269–286. https://doi.org/10.1108/ijdrbe-08-2012-0026.

Rijal, H. B., Tuohy, P., Nicol, F., Humphreys, M., Samuel, A. and Clarke, J. A. (2008). Development of an adaptive window-opening algorithm to predict the thermal comfort, energy use and overheating in buildings. Journal of Building Performance Simulation, 1(1): 17–30. https://doi.org/10.1080/19401490701868448.

Schiela, D. and Schünemann, C. (2020). Strategien gegen die Überhitzung. Gebäudeenergieberater, 05 2020, 20–23.

Schünemann, C., Olfert, A., Schiela, D., Gruhler, K. and Ortlepp, R. (2020). Mitigation and adaptation of multifamily housing: overheating and climate justice. Buildings and Cities, 1(1): 36–55. https://doi.org/10.5334/bc.12.

Schünemann, C., Ziemann, A., Goldberg, V. and Ortlepp, R. (2020b). Urban climate impact on indoor overheating – a model chain approach from urban climate to thermal building simulation. In: Zilahy, Gyula (Eds.): Sustainability in Transforming Societies. Proceedings of the 26th Annual Conference of the International Sustainable Development Research Society (ISDRS), 15-17 July 2020, Budapest, Hungary. Budapest: Budapest University of Technology and Economics, 723-734. http://www.isdrsconference.org/download/file/971/.

Schünemann, C., Schiela, D. and Ortlepp, R. (2021). How window ventilation behaviour affects the heat resilience in multi-residential buildings. Building and Environment, 202: 107987, ISSN 0360-1323 (Online First). https://doi.org/10.1016/j.buildenv.2021.107987.

The Chartered Institution of Building Services Engineers (CIBSE) (2017). CIBSE TM 59 (2017) Design Methodology for the Assessment of Overheating Risk in Homes. London: The Chartered Institution of Building Services Engineers.

Vellei, M., Ramallo-Gonzalez, A. P., Kaleli, D., Lee, J. and Natarajan, S. (2016). Investigating the overheating risk in refurbished social housing. In: Proceedings of 9th Windsor Conference: Making Comfort Relevant.

Vellei, M., Ramallo-Gonzalez, A. P., Coley, D., Lee, J., Gabe-Thomas, E., Lovett, T. and Natarajan, S. (2017). Overheating in vulnerable and non-vulnerable households. Building Research & Information, 45 (1-2): 102–118. https://doi.org/10.1080/09613218.2016.1222190.

Downloads

Published

2021-08-30

How to Cite

Schiela, D., & Schünemann, C. (2021). Window Ventilation Behavior for Overheating Evaluation: Residents’ Survey and Derived Ventilation Profiles. International Journal of Built Environment and Sustainability, 8(3), 121–133. https://doi.org/10.11113/ijbes.v8.n3.852