Systematic Review of Integrating 3D Laser Scanner and Building Information Modeling in Dimensional Quality Assessment of As-built Structures
DOI:
https://doi.org/10.11113/ijbes.v13.n1.1568Keywords:
Dimensional Quality, Laser Scanner, Building Information Modeling, As-builtAbstract
Ensuring the dimensional accuracy of constructed structures is crucial for quality control purposes in assessing whether the elements align with the design dimensions and tolerances and also to identify inconsistencies and deformations to prevent subsequent construction complications. This paper explores the integration of 3D laser scanner and Building Information Modeling (BIM) as an automated validation system for assessing dimensional quality. This method employs 3D laser scanner, point cloud registration and processing and scan-to-BIM techniques to facilitate dimensional deviation/tolerances analysis and verification. The paper presents a review of existing research on the automated dimensional quality assessment by using scientometric analysis and critical reviews. Firstly, three (3) key research themes are recognized and described based on the findings of scientometric analysis: a) reality capture to information integration, highlighting the transition from raw point cloud acquisition and registration to semantically enhanced BIM representations, b) dimensional conformance, which implements tolerance-aware comparisons between as-built data and design models to ensure traceability and compliance, and c) automation to site domain, which integrates the workflows into field application via automated system, machine learning, and deep learning to facilitate inspection, monitoring, and decision-making. Subsequently, existing assessment methodologies were evaluated and contrasted via critical review. The gaps between existing methodologies and actual needs are summarized. Finally, future directions in the field are anticipated correspondingly. Overall, this paper contributes to future research and applications concerning dimensional quality assessment through BIM application.
References
Adán, A., & de la Rubia, D. (2019). Reconstruction of As-is Semantic 3D Models of Unorganised Storehouses. 367–375. DOI: https://doi.org/10.1109/3DV.2019.00048
Adán, A., Xiong, X., Akinci, B., & Huber, D. (2011). Automatic creation of semantically rich 3D building models from laser scanner data. 343–348. DOI: https://doi.org/10.22260/isarc2011/0061
Ali, A. K., Lee, O. J., & Park, C. (2020). Near Real-Time Monitoring of Construction Progress: Integration of Extended Reality and Kinect V2. 24–31. https://www.scopus.com/inward/record.uri?eid=2 s2.0 85101887777&partnerID=40&md5=300240151bef8bf9cedf5e519360f6ea Retrieved on 17th January 2025
Anil, E. B., Sunnam, R., & Akinci, B. (2012). Challenges of identifying steel sections for the generation of As-Is BIMs from Laser Scan Data. 2012 Proceedings of the 29th International Symposium of Automation and Robotics in Construction, ISARC 2012. DOI: https://doi.org/10.4017/gt.2012.11.02.266.00
Arayici, Y. (2008). Towards building information modelling for existing structures. Structural Survey, 26(3): 210–222. DOI: https://doi.org/10.1108/02630800810887108
Balado, J., Díaz-Vilariño, L., Arias, P., & Soilán, M. (2017). Automatic building accessibility diagnosis from point clouds. Automation in Construction, 82: 103–111. DOI: https://doi.org/10.1016/j.autcon.2017.06.026
Biswas, H. K., Bosché, F., & Sun, M. (2015). Planning for scanning using building information models: A novel approach with occlusion handling. DOI: https://doi.org/10.22260/isarc2015/0047
Bosché, F., Ahmed, M., Turkan, Y., Haas, C. T., & Haas, R. (2015). The value of integrating Scan-to-BIM and Scan-vs-BIM techniques for construction monitoring using laser scanning and BIM: The case of cylindrical MEP components. Automation in Construction, 49: 201–213. DOI: https://doi.org/10.1016/j.autcon.2014.05.014
Brandstatter, M., Mikschi, M., Gabela, J., Linzer, F., & Neuner, H. (2024). Uncertainty Assessment of Poses Derived from Automatic Point Cloud Registration in the Context of Stop-and-Go Multi Sensor Robotic Systems. 2024 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI 2024. DOI: https://doi.org/10.1109/MFI62651.2024.10705770
Chen, C., Tang, L., Hancock, C. M., & Zhang, P. (2019). Development of low-cost mobile laser scanning for 3D construction indoor mapping by using inertial measurement unit, ultra-wide band and 2D laser scanner. Engineering, Construction and Architectural Management, 26(7): 1367–1386. DOI: https://doi.org/10.1108/ECAM-06-2018-0242
Cheng, G., Liu, J., Cui, N., Hu, H., Xu, C., & Tang, J. (2023). Virtual trial assembly of large steel members with bolted connections based on point cloud data. Automation in Construction, 151(March), 104866. DOI: https://doi.org/10.1016/j.autcon.2023.104866
Cheng, W., Shen, H., Chen, Y., Jiang, X., & Liu, Y. (2019). Automatical acquisition of point clouds of construction sites and its application in autonomous interior finishing robot. 1711–1716. DOI: https://doi.org/10.1109/ROBIO49542.2019.8961394
Choi, M., Kim, S., & Kim, S. (2024). Semi-automated visualization method for visual inspection of buildings on BIM using 3D point cloud. Journal of Building Engineering, 81(March 2023): 108017. DOI: https://doi.org/10.1016/j.jobe.2023.108017
De Angelis, E., Ciribini, A. L. C., Tagliabue, L. C., & Paneroni, M. (2015). The Brescia Smart Campus Demonstrator. Renovation toward a zero Energy Classroom Building. In W. O. Chong, U. Berardi, K. Parrish, & J. Chang (Eds.), Procedia Engineering .118: 735–743. Elsevier Ltd. DOI: https://doi.org/10.1016/j.proeng.2015.08.508
Dong, Z., Yang, B., Liang, F., Huang, R., & Scherer, S. (2018). Hierarchical registration of unordered TLS point clouds based on binary shape context descriptor. ISPRS Journal of Photogrammetry and Remote Sensing, 144: 61–79. DOI: https://doi.org/10.1016/j.isprsjprs.2018.06.018
Echeverría-Valiente, E., D’Amico, F. C., da Casa, F. D. C., De Miguel Sánchez, M., Domínguez Gómez, P. D., Conde, I. D., Santander, Á. M., Moreno Gata, K. M., Ballesteros, J. M. V, & Cristóbal, F. M. S. (2017). Integrated system for energy optimization and reduction of building co2 footprint. International Journal of Sustainable Building Technology and Urban Development, 8(2): 228–236. DOI: https://doi.org/10.12972/susb.20170020
Forth, K., Noichl, F., & Borrmann, A. (2024). LCA Calculation of Retrofitting Scenarios Using Geometric Model Reconstruction and Semantic Enrichment of Point Clouds and Images. In Y. Turkan, J. Louis, F. Leite, & S. Ergan (Eds.), ASCE International Conference on Computing in Civil Engineering 2023: Visualization, Information Modeling, and Simulation, i3CE 2023. 390–397. American Society of Civil Engineers (ASCE).
Frías, E., Previtali, M., Díaz-Vilariño, L., Scaioni, M., & Lorenzo, H. (2022). Optimal scan planning for surveying large sites with static and mobile mapping systems. ISPRS Journal of Photogrammetry and Remote Sensing, 192: 13–32. DOI: https://doi.org/10.1016/j.isprsjprs.2022.07.025
Gao, T., Akinci, B., Ergan, S., & Garrett, J. H. (2012). Constructing as-is BIMs from progressive scan data. 2012 Proceedings of the 29th International Symposium of Automation and Robotics in Construction, ISARC 2012, March 2015. DOI: https://doi.org/10.4017/gt.2012.11.02.500.00
Garwood, T. L., Hughes, B. R., O’Connor, D., Kaiser Calautit, J. K., Oates, M. R., & Hodgson, T. (2018). A framework for producing gbXML building geometry from Point Clouds for accurate and efficient Building Energy Modelling. Applied Energy, 224: 527–537. DOI: https://doi.org/10.1016/j.apenergy.2018.04.046
González-Aguilera, D., Rodríguez-Gonzálvez, P., Armesto-González, J., & Lagüela, S. (2012). Novel approach to 3D thermography and energy efficiency evaluation. Energy and Buildings, 54: 436–443. DOI: https://doi.org/10.1016/j.enbuild.2012.07.023
Guldur, B., & Hajjar, J. F. (2017). Laser-based surface damage detection and quantification using predicted surface properties. Automation in Construction, 83: 285–302. DOI: https://doi.org/10.1016/j.autcon.2017.08.004
Hake, F., Lippmann, P., Alkhatib, H., Oettel, V., & Neumann, I. (2023). Automated damage detection for port structures using machine learning algorithms in heightfields. Applied Geomatics, 15(2): 349–357. DOI: https://doi.org/10.1007/s12518-023-00493-z
Hamdan, A. H., Taraben, J., Helmrich, M., Mansperger, T., Morgenthal, G., & Scherer, R. J. (2021). A semantic modeling approach for the automated detection and interpretation of structural damage. Automation in Construction, 128(February): 103739. DOI: https://doi.org/10.1016/j.autcon.2021.103739
Han, Y., Feng, D., Wu, W., Yu, X., Wu, G., & Liu, J. (2023). Geometric shape measurement and its application in bridge construction based on UAV and terrestrial laser scanner. Automation in Construction, 151. DOI: https://doi.org/10.1016/j.autcon.2023.104880
Han, Y., Peng, F., Wang, Z., & Meng, Q. (2024). An automatic measurement method for hull weld seam dimensions based on 3D laser scanning. Ocean Engineering, 312(P1): 118922. DOI: https://doi.org/10.1016/j.oceaneng.2024.118922
Hu, W., & Hu, R. (2024). Creating Historical Building Models by Deep Fusion of Multi-Source Heterogeneous Data Using Residual 3D Convolutional Neural Network. International Journal of Architectural Heritage, 18(9): 1377–1393. DOI: https://doi.org/10.1080/15583058.2023.2229253
Jiang, Y., Shu, J., Zhao, W., & Sun, B. (2020a). Automated identification and positioning of precast concrete rebars using 3D point cloud. 2020 Fib Symposium: Concrete Structures for Resilient Society. https://www.scopus.com/pages/publications/85102402698?inward
Jiang, Y., Shu, J., Zhao, W., & Sun, B. (2020b). Automated identification and positioning of precast concrete Rebars using 3d point cloud. In B. Zhao & X. Lu (Eds.), International fib Symposium on Concrete structures for resilient society, 2020. fib. The International Federation for Structural Concrete. https://www.scopus.com/inward/record.uri?eid=2 s2.0 85134817474&partnerID=40&md5=d7a82eed1bf06bab078bbad30b5b4021
Jung, J., Hong, S., Jeong, S., Kim, S., Cho, H., Hong, S., & Heo, J. (2014). Productive modeling for development of as-built BIM of existing indoor structures. Automation in Construction, 42: 68–77. DOI: https://doi.org/10.1016/j.autcon.2014.02.021
Kalasapudi, V. S., Tang, P., Zhang, C., Diosdado, J., & Ganapathy, R. (2015). Adaptive 3D Imaging and Tolerance Analysis of Prefabricated Components for Accelerated Construction. In W. O. Chong, U. Berardi, K. Parrish, & J. Chang (Eds.), Procedia Engineering.118: 1060–1067). Elsevier Ltd. DOI: https://doi.org/10.1016/j.proeng.2015.08.549
Kim, C., Kim, C., & Son, H. (2013). Automated reconstruction of 3D AS-built building information model for building energy performance assessment. ISARC 2013 - 30th International Symposium on Automation and Robotics in Construction and Mining, Held in Conjunction with the 23rd World Mining Congress, 756: 1139–1147.
Kim, D., Kwak, Y., & Sohn, H. (2020). Accelerated cable-stayed bridge construction using terrestrial laser scanning. Automation in Construction, 117. DOI: https://doi.org/10.1016/j.autcon.2020.103269
Kim, H., Yoon, J., Hong, J., & Sim, S.-H. (2021). Automated Damage Localization and Quantification in Concrete Bridges Using Point Cloud-Based Surface-Fitting Strategy. Journal of Computing in Civil Engineering, 35(6). DOI: https://doi.org/10.1061/(ASCE)CP.1943-5487.0000993
Kim, J., Kim, J., Koo, N., & Kim, H. (2024). Automating scaffold safety inspections using semantic analysis of 3D point clouds. Automation in Construction, 166(July): 105603. DOI: https://doi.org/10.1016/j.autcon.2024.105603
Kim, M.-K., Park, J., Wang, Q., & Sohn, H. (2015). Dimensional quality assessment of atypical precast elements using laser scanning and bim. https://www.scopus.com/inward/record.uri?eid=2 s2.084983135126&partnerID=40&md5=91367f4cbc5ada04271204eafd97f59f
Kim, M.-K., Wang, Q., Yoon, S., & Sohn, H. (2019). A mirror-aided laser scanning system for geometric quality inspection of side surfaces of precast concrete elements. Measurement: Journal of the International Measurement Confederation, 141: 420–428. DOI: https://doi.org/10.1016/j.measurement.2019.04.060
Kim, M., & Lee, D. (2023). Automated two-dimensional geometric model reconstruction from point cloud data for construction quality inspection and maintenance. Automation in Construction, 154. DOI: https://doi.org/10.1016/j.autcon.2023.105024
Kim, P., Chen, J., & Cho, Y. K. (2018). Automated Point Cloud Registration Using Visual and Planar Features for Construction Environments. Journal of Computing in Civil Engineering, 32(2). DOI: https://doi.org/10.1061/(ASCE)CP.1943-5487.0000720
Kong, Q., Liao, L., & Yuan, C. (2023). Rapid generation of editable engineering drawings from 3D point cloud reconstruction for large-scale buildings. Journal of Building Engineering, 63. DOI: https://doi.org/10.1016/j.jobe.2022.105486
Laefer, D. F., & Truong-Hong, L. (2017). Toward automatic generation of 3D steel structures for building information modelling. Automation in Construction, 74: 66–77. DOI: https://doi.org/10.1016/j.autcon.2016.11.011
Li, D., Wang, G., Cheng, P., Guo, M., Ren, X., & Geng, C. (2023). Intellectual quality analysis of temporary facilities installation for the XXIV Olympics Winter Games based on automatic factors extraction algorithm. In Z. Bai, Q. Chen, & Y. Tan (Eds.), Proceedings of SPIE - The International Society for Optical Engineering.12554. SPIE. https://doi.org/10.1117/12.2651056
Lin, Y.-C., Liu, J., Cheng, Y.-T., Hasheminasab, S. M., Wells, T., Bullock, D., & Habib, A. (2021). Processing strategy and comparative performance of different mobile lidar system grades for bridge monitoring: A case study. Sensors, 21(22). DOI: https://doi.org/10.3390/s21227550
Liu, W., Li, Z., Sun, S., Du, H., & Sotelo, M. A. (2021). Georeferencing kinematic modeling and error correction of terrestrial laser scanner for 3D scene reconstruction. Automation in Construction, 126. DOI: https://doi.org/10.1016/j.autcon.2021.103673
Lorenzo, H., Arias, P., Armesto-González, J., Riveiro, B., Solla, M., González-Jorge, H., Caamaño, C., Martínez-Sánchez, J., Álvarez Cid, M., & Lagüela, S. (2012). Ten years of applying geomatics to construction engineering in Spain: A review. DYNA (Colombia), 79(175 E): 129–146. https://www.scopus.com/inward/record.uri?eid=2-s2.0 84876943841&partnerID=40&md5=9040c4db9b701b27d66eaae04cc8f048 Retrieved on 27th August 2025
Love, P. E. D., Zhou, J., & Matthews, J. (2019). Project controls for electrical, instrumentation and control systems: Enabling role of digital system information modelling. Automation in Construction, 103(March): 202–212. DOI: https://doi.org/10.1016/j.autcon.2019.03.010
Macher, H., Landes, T., & Grussenmeyer, P. (2017). From point clouds to building information models: 3D semi-automatic reconstruction of indoors of existing buildings. Applied Sciences (Switzerland), 7(10): 1–30. DOI: https://doi.org/10.3390/app7101030
Mirzaei, K., Arashpour, M., Asadi, E., Feng, H., Mohandes, S. R., & Bazli, M. (2023). Automatic compliance inspection and monitoring of building structural members using multi-temporal point clouds. Journal of Building Engineering, 72. DOI: https://doi.org/10.1016/j.jobe.2023.106570
Nahangi, M., Chaudhary, L., Yeung, J., Haas, C. T., & Walbridge, S. (2015). Skeleton-based registration of 3D laser scans for automated quality assurance of industrial facilities. In W. J. O’Brien & S. Ponticelli (Eds.), Congress on Computing in Civil Engineering, Proceedings (Vols. 2015-Janua, Issue January, pp. 33–40). American Society of Civil Engineers (ASCE) onlinejls@asce.org. DOI: https://doi.org/10.1061/9780784479247.005
Nena, T. D., Musonda, I., & Okoro, C. (2024). Feasibility of an Automated Inspection Process Adoption for Quality Housing Delivery in South Africa. In Lecture Notes in Civil Engineering. 357: 383–397). Springer Science and Business Media Deutschland GmbH. DOI: https://doi.org/10.1007/978-3-031-35399-4_29
O’Donnell, J., Truong-Hong, L., Boyle, N., Corry, E., Cao, J., & Laefer, D. F. (2019). LiDAR point-cloud mapping of building façades for building energy performance simulation. Automation in Construction, 107. DOI: https://doi.org/10.1016/j.autcon.2019.102905
Özkan, T., Pfeifer, N., & Hochreiner, G. (2024). Automatic completion of geometric models from point clouds for analyzing historic timber roof structures. Frontiers in Built Environment, 10(April): 1–15. DOI: https://doi.org/10.3389/fbuil.2024.1368918
Peansupap, V., & Theint, K. Z. Z. (2024). Effects of Wall Angle between Small Strip Areas by Using Point Cloud Data. In T. Kang (Ed.), 5th International Conference on Civil Engineering and Architecture, ICCEA 2022 . 449–460. Springer Science and Business Media Deutschland GmbH. DOI: https://doi.org/10.1007/978-981-99-4049-3_35
Pevzner, A., Hasan, S., Sacks, R., & Degani, A. (2020). Construction operation assessment and correction using laser scanning and projection feedback. Proceedings of the 37th International Symposium on Automation and Robotics in Construction, ISARC 2020: From Demonstration to Practical Use - To New Stage of Construction Robot, December 2021:1247–1254. DOI: https://doi.org/10.22260/isarc2020/0171
Prieto, S. A., García de Soto, G. B., & Adán, A. (2020). A methodology to monitor construction progress using autonomous robots. 1515–1522. https://www.scopus.com/inward/record.uri?eid=2 s2.0 85109381155&partnerID=40&md5=8fe0529286c6d418967653cc3f8a7eb6
Rada, A. O., Kuznetsov, A. D., Akulov, A. O., & Kon’kov, N. Y. (2023). Managing the accuracy and speed of processes for automated monitoring of construction works in the context of new technologies. Nanotechnologies in Construction, 15(6): 583–591. DOI: https://doi.org/10.15828/2075-8545-2023-15-6-583-591
Rada, A. O., Kuznetsov, A. D., Zverev, R. E., & Timofeev, A. E. (2023). Automation of monitoring construction works based on laser scanning from unmanned aerial vehicles. Nanotechnologies in Construction, 15(4): 373–382. DOI: https://doi.org/10.15828/2075-8545-2023-15-4-373-382
Rankohi, S., & Waugh, L. (2015). Image-based modeling approaches for projects status comparison. 1: 455–464. https://www.scopus.com/inward/record.uri?eid=2 s2.0 84963664690&partnerID=40&md5=7c5072d6df5ada8811b9285f0aa2cc4c
Razali, A. F., Mohd Ariff, M. F. M., Majid, Z., & Hamid, H. A. (2023). Statistical Assessment for Point Cloud Dataset. 42–47. DOI: https://doi.org/10.1109/CSPA57446.2023.10087473
Romanschek, E., Clemen, C., Wujanz, D., & Gielsdorf, F. (2020). Modelling of solids based on topological and geometric knowledge from scan registration. AVN Allgemeine Vermessungs-Nachrichten, 127(1): 3–8. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079508657&partnerID=40&md5=5137e556ba925679e89980d771d03d2b
Schleinkofer, M., & Rank, E. (2009). Automatic assistance for creating a product model for existing building stock. Bauingenieur, 84(FEB.), 65–72. https://www.scopus.com/inward/record.uri?eid=2-s2.0-65349083347&partnerID=40&md5=79081c65a7d58f24beaa69daae0b8f5c
Shan, J., Zhu, H., & Yu, R. (2023). Feasibility of Accurate Point Cloud Model Reconstruction for Earthquake-Damaged Structures Using UAV-Based Photogrammetry. Structural Control and Health Monitoring, 2023. DOI: https://doi.org/10.1155/2023/7743762
Sing, M. C. P., Luk, S. Y. Y., Chan, K. H. C., Liu, H. J., & Humphrey, R. (2024). Scan-to-BIM technique in building maintenance projects: practicing quantity take-off. International Journal of Building Pathology and Adaptation, 42(6): 1250–1262. https://doi.org/10.1108/IJBPA-06-2022-0097
Son, R. H., & Han, K. (2023). Automated Model-Based 3D Scan Planning for Prefabricated Building Components. Journal of Computing in Civil Engineering, 37(2). DOI:https://doi.org/10.1061/(ASCE)CP.1943-5487.0001055
Tang, P., & Akinci, B. (2012). Formalization of workflows for extracting bridge surveying goals from laser-scanned data. Automation in Construction, 22: 306–319. DOI: https://doi.org/10.1016/j.autcon.2011.09.006
Tang, P., & Alaswad, F. S. (2012). Sensor modeling of laser scanners for automated scan planning on construction jobsites. 1021–1031. DOI: https://doi.org/10.1061/9780784412329.103
Truong-Hong, L., Lindenbergh, R., & Fisk, P. (2020). Storage tank inspection based laser scanning. In J. N. Reddy, C. M. Wang, V. H. Luong, & A. T. Le (Eds.), Lecture Notes in Civil Engineering. 80: 987–996). Springer. DOI: https://doi.org/10.1007/978-981-15-5144-4_95
Turkan, Y., Hong, J., Laflamme, S., & Puri, N. (2018). Adaptive wavelet neural network for terrestrial laser scanner-based crack detection. Automation in Construction, 94: 191–202. DOI: https://doi.org/10.1016/j.autcon.2018.06.017
Vierhub-Lorenz, V., Werner, C. S., von Olshausen, P., & Reiterer, A. (2023). Towards Automating Tunnel Inspections with Optical Remote Sensing Techniques. AVN Allgemeine Vermessungs-Nachrichten, 130(1–2): 35–41. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152364779&partnerID=40&md5=4ebab3e89487ab83925f9dcaf444ae2b
Vierhub-Lorenz, V., Werner, C. S., Weiher, K., Heinze, C., & Reiterer, A. (2023). Laser-based measurement system for the detection of delamination in tunnel linings. In P. Lehmann (Ed.), Proceedings of SPIE - The International Society for Optical Engineering. 12618. SPIE. DOI: https://doi.org/10.1117/12.2672785
Volk, R., Luu, T. H., Mueller-Roemer, J. S., Sevilmis, N., & Schultmann, F. (2018). Deconstruction project planning of existing buildings based on automated acquisition and reconstruction of building information. Automation in Construction, 91: 226–245. DOI: https://doi.org/10.1016/j.autcon.2018.03.017
Wang, B., Chen, Z., Li, M., Wang, Q., Yin, C., & Cheng, J. C. P. (2024). Omni-Scan2BIM: A ready-to-use Scan2BIM approach based on vision foundation models for MEP scenes. Automation in Construction, 162(January): 105384. DOI: https://doi.org/10.1016/j.autcon.2024.105384
Wang, C., & Cho, Y. K. (2014). Automatic as-is 3D building models creation from unorganized point clouds. 917–924. DOI: https://doi.org/10.1061/9780784413517.0094
Wang, C., Cho, Y. K., & Kim, C. (2015). Automatic BIM component extraction from point clouds of existing buildings for sustainability applications. Automation in Construction, 56: 1–13. https://doi.org/10.1016/j.autcon.2015.04.001
Wang, Q., Cheng, J. C. P., & Sohn, H. (2015). Automated quality inspection of precast concrete elements with irregular shapes using terrestrial laser scanner and BIM technology. 32nd International Symposium on Automation and Robotics in Construction and Mining: Connected to the Future, Proceedings. https://doi.org/10.22260/isarc2015/0035
Wang, Q., Cheng, J. C. P., & Sohn, H. (2016). Automatic reconstruction of as-built BIM from laser scanned data of precast concrete elements for dimensional quality assessment. 114–122. DOI: https://doi.org/10.22260/isarc2016/0015
Wang, Q., Cheng, J. C. P., & Sohn, H. (2017). Automated Estimation of Reinforced Precast Concrete Rebar Positions Using Colored Laser Scan Data. Computer-Aided Civil and Infrastructure Engineering, 32(9), 787–802. https://doi.org/10.1111/mice.12293
Wang, Q., Kim, M.-K., Cheng, J. C. P., & Sohn, H. (2016). Automated quality assessment of precast concrete elements with geometry irregularities using terrestrial laser scanning. Automation in Construction, 68: 170–182. DOI: https://doi.org/10.1016/j.autcon.2016.03.014
Wang, Q., Sohn, H., & Cheng, J. C. P. (2018). Automatic As-Built BIM Creation of Precast Concrete Bridge Deck Panels Using Laser Scan Data. Journal of Computing in Civil Engineering, 32(3). DOI: https://doi.org/10.1061/(ASCE)CP.1943-5487.0000754
Wang, X., Demartino, C., Narazaki, Y., Monti, G., & Spencer, B. F. (2023). Rapid seismic risk assessment of bridges using UAV aerial photogrammetry. Engineering Structures, 279. DOI: https://doi.org/10.1016/j.engstruct.2023.115589
Xiong, X., Adan, A., Akinci, B., & Huber, D. (2013). Automatic creation of semantically rich 3D building models from laser scanner data. Automation in Construction, 31: 325–337. DOI: https://doi.org/10.1016/j.autcon.2012.10.006
Xu, C., Zhou, H., & Li, H. (2024). The Research of Interior Measurement Methods and Robotics. 7th International Conference on Geotechnics, Civil Engineering and Structures, CIGOS 2024, 690–698. https://doi.org/10.1007/978-981-97-1972-3_77
Xu, Y., Luo, Y., & Zhang, J. (2022). Laser-scan based pose monitoring for guiding erection of precast concrete bridge piers. Automation in Construction, 140. DOI: https://doi.org/10.1016/j.autcon.2022.104347
Yan, Y., & Hajjar, J. F. (2021a). Automated extraction of structural elements in steel girder bridges from laser point clouds. Automation in Construction, 125. DOI: https://doi.org/10.1016/j.autcon.2021.103582
Yan, Y., & Hajjar, J. F. (2021b). Automated Geometric Reconstruction of Partially Occluded Steel Elements from Terrestrial Laser Scanning Data (R. R. A. Issa (ed.); 382–390). American Society of Civil Engineers (ASCE). DOI: https://doi.org/10.1061/9780784483893.048
Yan, Y., & Hajjar, J. F. (2024). A parametric approach for creating finite element models from point clouds for steel superstructure components in steel girder bridges. Structure and Infrastructure Engineering. DOI: https://doi.org/10.1080/15732479.2024.2408452
Zabin, A., Khalil, B., Ali, T., Abdalla, J. A., & Elaksher, A. (2020). A semi-automated method for integrating textural and material data into as-built BIM using TIS. Advances in Computational Design, 5(2): 127–146. DOI: https://doi.org/10.12989/acd.2020.5.2.127
Zeng, R., Shi, J. J. S., Wang, C., & Lu, T. (2024). Integrating as-built BIM model from point cloud data in construction projects. Engineering, Construction and Architectural Management, 31(9): 3557–3574. DOI: https://doi.org/10.1108/ECAM-12-2022-1196
Zhao, J., Chen, J., Liang, Y., & Xu, Z. (2024). Feature Selection-Based Method for Scaffolding Assembly Quality Inspection Using Point Cloud Data. Buildings, 14(8): 1–20. DOI: https://doi.org/10.3390/buildings14082518
Zhu, J., Xu, Y., Hoegner, L., & Stilla, U. (2023). Generation of Thermal Point Clouds From Uncalibrated Thermal Infrared Image Sequences and Mobile Laser Scans. IEEE Transactions on Instrumentation and Measurement, 72. DOI: https://doi.org/10.1109/TIM.2023.3284942
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Built Environment and Sustainability

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright of articles that appear in International Journal of Built Environment and Sustainability belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions or any other reproductions of similar nature.
Authors who publish with this journal agree to the following terms:
- This Journal applies Creative Commons Licenses of CC-BY-NC-SA
- Authors retain copyright and grant the journal right of publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).















