Cost Efficiency of Green Infrastructure in Flash Flood Management: An Economic Model for Local Authorities

Authors

  • Kamarulzaman Mat Salleh Faculty of Built Environment & Surveying, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Shazmin Shareena Ab Azis Faculty of Built Environment & Surveying, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nursyuhaida Aziz Faculty of Built Environment & Surveying, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Shastitharran Baskaran Faculty of Built Environment & Surveying, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nur Hannani Ab Rahman Faculty of Built Environment & Surveying, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/ijbes.v13.n1.1629

Keywords:

Green infrastructure, green roof, permeable pavements, bioswales, urban stormwater

Abstract

The gradual increase in the urbanization process over the years has increased the impervious surfaces while reducing green spaces, thereby contributing to the frequent occurrence of flash floods. The higher prevalence of flash foods has impacted the local authorities in spending huge amounts of costing for the purpose of repairing and cleaning the damaged public infrastructures. Therefore, numerous studies have proven the positive association between the availability of green infrastructures, namely green roofs, bioswales, and permeable pavements and their roles in minimizing stormwater runoff and flood risks in city area. However, there are limited studies which evaluate the economic worth of implementing these green infrastructures in preventing flash floods. Hence, it is vital to evaluate the potential long-term cost reductions from implementation of green infrastructure in flash flood mitigation to local authorities. Henceforth, this study aims to develop an economic model of the green infrastructure’s efficiency of green roof, permeable pavement, and bioswale in managing stormwater runoff. This study is conducted within the jurisdiction of Dewan Bandaraya Kuala Lumpur. It integrated data from systematic analysis from literature reviews and cost-benefit analysis based on interviews with local authorities to estimate the savings achieved through green infrastructure in flash flood management for local authorities. The findings show that the estimated cost savings by implementing green roof, permeable pavement and bioswale are approximately RM6,848, RM7,500 and RM6,875 per km² respectively. However, it is recommended to implement all three green infrastructures to maximize the overall effectiveness in reducing stormwater runoff and to achieve optimal cost savings from economic and environmental perspectives. This study is significant in promoting sustainable practices in infrastructure management and achieving the nation's Sustainable Development agenda.

References

Abera, L. E., Surbeck, C. Q., & Alexander, K. (2021). Evaluating the effect of city ordinances on the implementation and performance of green stormwater infrastructure (GSI). Environmental Challenges, 4: 100183. DOI: https://doi.org/10.1016/j.envc.2021.100183

Anderson, B. S., Phillips, B. M., Voorhees, J. P., & Cahn, M. (2017). Vegetated treatment systems for removing contaminants associated with surface water toxicity in agriculture and urban runoff. Journal of Visualized Experiments, 123: e55391. DOI: https://doi.org/10.3791/55391

Antunes, L. N., Ghisi, E., & Thives, L. P. (2018). Permeable pavements life cycle assessment: A literature review. Water, 10(11): 1575. DOI: https://doi.org/10.3390/w10111575

Azis, S. S. A., & Zulkifli, N. A. A. (2021). Green roof for sustainable urban flash flood control via cost benefit approach for local authority. Urban Forestry & Urban Greening, 57: 126876. DOI: https://doi.org/10.1016/j.ufug.2020.126876

Ball, J. E., & Rankin, K. (2010). The hydrological performance of a permeable pavement. Urban Water Journal, 7(2): 79-90. https://doi.org/10.1080/15730620902969773

Balut, S. J., & Gulledge, T. R., Jr. (2001). Cost analysis. In S. I. Gass & C. M. Harris (Eds.), Encyclopedia of operations research and management science. 152–155. Springer. DOI: https://doi.org/10.1007/1-4020-0611-X_174

Bartens, J., Day, S. D., Harris, J. R., Dove, J. E., & Wynn, T. M. (2008). Can urban tree roots improve infiltration through compacted subsoils for stormwater management?. Journal of environmental quality, 37(6): 2048-2057. DOI: https://doi.org/10.2134/jeq2008.0117

Brankovic, M. D., & Protic, I. B. (2018). Bioswales as elements of green infrastructure–foreign practice and possibilities of use in the district of the City of Nis, Serbia. In Proceedings of the 2nd International Conference on Urban Planning. 347-356. (https://www.climatescan.nl/uploads/projects/4503/files/516/ICUP2018%20Bioswales%20as%20elements%20of%20green%20infrastructure%20Serbia%20FCB%20interesting%20show%20cases.pdf)

Cascone, S. (2019). Green roof design: State of the art on technology and materials. Sustainability, 11(11): 3020. DOI: https://doi.org/10.3390/su11113020

Chai, C. T., Putuhena, F. J., & Selaman, O. S. (2017). A modelling study of the event-based retention performance of green roof under the hot-humid tropical climate in Kuching. Water Science and Technology, 76(11): 2988-2999. DOI: https://doi.org/10.2166/wst.2017.472

Cilliers, E. J., & Cilliers, S. S. (2016). Planning for green infrastructure: Options for South African cities (Research Report). South African Cities Network. Retrieved December 25, 2024, from https://www.researchgate.net/publication/317303645

Clark, A. M. (2016). Why qualitative research needs more and better systematic review. International journal of qualitative methods, 15(1):1609406916672741. DOI: https://doi.org/10.1177/1609406916672741

Collins, K. A. (2007). A field evaluation of four types of permeable pavement with respect to water quality improvement and flood control (Master’s thesis). North Carolina State University. Retrieved March 6, 2023, from https://repository.lib.ncsu.edu/items/8f1bb40f-a029-4264-bfaa-487e42373bb9

Collins, K. A., Hunt, W. F., & Hathaway, J. M. (2008). Hydrologic comparison of four types of permeable pavement and standard asphalt in eastern North Carolina. Journal of Hydrologic Engineering, 13(12): 1146–1157. DOI: https://doi.org/10.1061/(ASCE)1084-0699(2008)13:12(1146)

Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., Orru, H., ... & Faehnle, M. (2014). Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. Journal of environmental management, 146: 107-115. DOI: https://doi.org/10.1016/j.jenvman.2014.07.025

DeNardo, J.C., Jarrett, A.R., Manbeck, H.B., Beattie, D.J., Berghage, R.D. (2005). Stormwater mitigation and surface temperature reduction by green roofs. Transactions of the American Society of Agricultural Engineers 48(4): 1491– 1496. DOI: https://doi.org/10.13031/2013.19181

Defra. (2007). An introductory guide to valuing ecosystem services. London, UK: DEFRA. Retrieved October 13, 2023, from https://sciencesearch.defra.gov.uk/

Department of Statistics Malaysia. (2023). Special report on impact of floods in Malaysia 2022. Department of Statistics Malaysia. Retrieved January 19, 2025, from https://www.dosm.gov.my/uploads/release-content/file_20230307164011.pdf.

Drake, J., Bradford, A., Van Seters, T., & MacMillan, G. (2012). Evaluation of permeable pavements in cold climates: Kortright Centre, Vaughan (Final report). Toronto and Region Conservation Authority. Retrieved June 12, 2024, from https://owl.cwp.org/mdocs-posts/drake-et-al-2012-evaluation-of-permeable-pavements/

Dreelin, E. A., Fowler, L., & Carroll, C. R. (2006). A test of porous pavement effectiveness on clay soils during natural storm events. Water research, 40(4): 799-805. DOI: https://doi.org/10.1016/j.watres.2005.12.002

European Commission. (2012). The multifunctionality of green infrastructure (Science for Environment Policy, In‐depth Report). Directorate‐General for Environment. Retrieved June 16, 2024, from http://ec.europa.eu/environment/nature/ecosystems/docs/Green_Infrastructure.pdf

Fassman, E. A., & Blackbourn, S. (2010). Urban runoff mitigation by a permeable pavement system over impermeable soil. Journal of hydrologic engineering, 15(6): 475-485. DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000238

Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S., ... & Viklander, M. (2015). SUDS, LID, BMPs, WSUD and more–The evolution and application of terminology surrounding urban drainage. Urban water journal, 12(7): 525-542. DOI: https://doi.org/10.1080/1573062X.2014.916314

Foster, J., Lowe, A., & Winkelman, S. (2011, February). The value of green infrastructure for urban climate adaptation (Center for Clean Air Policy Technical Report No. 750(1), pp. 1–52). Center for Clean Air Policy. Retrieved June 16, 2024, from http://www.savetherain.us/wp content/uploads/2011/10/Green_Infrastructure_Urban_Climate_Adaptation.pdf

Fox, N. (2009). Using interviews in a research project (Resource Pack). NIHR Research Design Service for the East Midlands & Yorkshire & the Humber. Retrieved April 3, 2024, from https://docslib.org/doc/1603704/chapter-3-research-methodology

Gaitan, S., Van De Giesen, N. C., & Ten Veldhuis, J. A. E. (2016). Can urban pluvial flooding be predicted by open spatial data and weather data?. Environmental Modelling & Software, 85: 156-171. DOI: https://doi.org/10.1016/j.envsoft.2016.08.007

Getter KL, Rowe DB, Andresen JA (2007). Quantifying the effect of slope on extensive green roof stormwater retention. Ecological Engineering, 31(4): 225–31. DOI: https://doi.org/10.1016/j.ecoleng.2007.06.004

Gong, Y., Yin, D., Li, J., Zhang, X., Wang, W., Fang, X., & Wang, Q. (2019). Performance assessment of extensive green roof runoff flow and quality control capacity based on pilot experiments. Science of the Total Environment, 687: 505–515. DOI: https://doi.org/10.1016/j.scitotenv.2019.06.100

Green, D., O'Donnell, E., Johnson, M., Slater, L., Thorne, C., Zheng, S., ... & Boothroyd, R. J. (2021). Green infrastructure: The future of urban flood risk management?. Wiley Interdisciplinary Reviews: Water, 8(6): e1560. DOI: https://doi.org/10.1002/wat2.1560

Gregoire B, Clausen J (2011). Effect of a modular extensive green roof on storm water runoff and water quality. Ecological Engineering, 37:963–9. DOI: https://doi.org/10.1016/j.ecoleng.2011.02.004

Gustafsson, M., & von Platen, H. N. (2018). Nature-based solutions for flood risk reduction. Contamination Control and Climate Change Adaption, Institute of Coimbra, Portugal. Retrieved April 22, 2024, from https://www.diva-portal.org/smash/get/%20diva2:1254673/FULLTEXT01.pdf

Hathaway, A. M., Hunt, W. F., & Jennings, G. D. (2008). A field study of green roof hydrologic and water quality performance. Transactions of the ASABE, 51(1): 37–43. DOI: https://doi.org/10.13031/2013.24225

Hu, S., Liu, L., Cao, J., Chen, N., & Wang, Z. (2019). Water resilience by centipedegrass green roof: A case study. Buildings, 9(6): 141. DOI: https://doi.org/10.3390/buildings9060141

Hunt, W. F., Hathaway, J. M., Winston, R. J., & Jadlocki, S. J. (2010). Runoff volume reduction by a level spreader–vegetated filter strip system in suburban Charlotte, N.C. Journal of Hydrologic Engineering, 15(6): 499–503. DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000160

Imran, H. M., Akib, S., & Karim, M. R. (2013). Permeable pavement and stormwater management systems: a review. Environmental technology, 34(18): 2649-2656. DOI: https://doi.org/10.1080/09593330.2013.782573

Jiang, C., Li, J., Li, H., Li, Y., & Zhang, Z. (2020). Low-impact development facilities for stormwater runoff treatment: Field monitoring and assessment in Xi’an area, China. Journal of Hydrology, 585: 124803. DOI: https://doi.org/10.1016/j.jhydrol.2020.124803

Johnston, R. J., Rolfe, J., Rosenberger, R. S., & Brouwer, R. (Eds.). (2015). Benefit transfer of environmental and resource values: A guide for researchers and practitioners (The Economics of Non Market Goods and Resources. 14. Springer. DOI: https://doi.org/10.1007/978-94-017-9930-0

Keeley, M., Koburger, A., Dolowitz, D. P., Medearis, D., Nickel, D., & Shuster, W. (2013). Perspectives on the use of green infrastructure for stormwater management in Cleveland and Milwaukee. Environmental management, 51: 1093-1108. DOI: https://doi.org/10.1007/s00267-013-0032-x

Kõiv‑Vainik, M., Kill, K., Espenberg, M., Uuemaa, E., Teemusk, A., Maddison, M., Palta, M. M., Török, L., Mander, Ü., Scholz, M., & Kasak, K. (2022). Urban stormwater retention capacity of nature‑based solutions at different climatic conditions. Nature‑Based Solutions, 2: Article 100038. DOI: https://doi.org/10.1016/j.nbsj.2022.100038

Kuok, K. K., Chiu, P. C., Chin, M. Y., Rahman, R., & Bakri, M. K. B. (2024). Effectiveness of bioretention system and vegetated swale for reducing urban flood risk in equatorial region: A case study in Kuching, Malaysia. Sustainable Water Resources Management, 10: Article 76. DOI: https://doi.org/10.1007/s40899-024-01081-8

Kwiatkowski, M., Welker, A. L., Traver, R. G., Vanacore, M., & Ladd, T. (2007). Evaluation of an infiltration best management practice utilizing pervious concrete. Journal of the American Water Resources Association, 43(5): 1208–1222. DOI: https://doi.org/10.1111/j.1752-1688.2007.00104.x

Le Trung, N., Khawaja, M., Beyranvand, E., Bucchi, D., Singh, A., & Alam, A. A. (2018). Approaching a nearly zeroenergy building in integrated building design by using green roof and double skin façade as major energy saving strategies. Integrated Building design. DOI: https://doi.org/10.13140/RG.2.2.10839.32163

Li, T., Tang, X., Xia, J., Gong, G., Xu, Y., & Li, M. (2024). Effect of eco‑friendly pervious concrete pavement with travertine waste and sand on the heavy metal removal and runoff reduction performance. Journal of Environmental Management, 366: Article 121757. DOI: https://doi.org/10.1016/j.jenvman.2024.121757

Liu, W., Feng, Q., Chen, W., & Wei, W. (2020). Assessing the runoff retention of extensive green roofs using runoff coefficients and curve numbers and the impacts of substrate moisture. Hydrology Research, 51(4), 635–647. https://doi.org/10.2166/nh.2020.004

Mansor, N. F. A., Md Nor, N. N. F., Idris, N. R. A., Abdul Rashid, S. M. R., Mohamad Yusof, I., & Kemarau, R. (2023). Bencana banjir dan impak terhadap penduduk: Kajian kes di Kedah (Flood disaster and impact on residents: Case study in Kedah). GEOGRAFI, 11(1): 44–67. DOI: https://doi.org/10.37134/geografi.vol11.1.3.2023

Marchioni, M., Becciu, G., & Silva, C. (2015). Critical analysis of the Brazilian national standard for concrete permeable pavement. WIT Transactions on Ecology and the Environment, 192: 443–453. DOI: https://doi.org/10.2495/ECO150391

McFarland, A. R., Larsen, L., Yeshitela, K., Engida, A. N., & Love, N. G. (2019). Guide for using green infrastructure in urban environments for stormwater management. Environmental science: Water research & technology, 5(4): 643-659. https://doi.org/10.2495/ECO150391 DOI: https://doi.org/10.1039/C8EW00498F

Mentens, J., Raes, D., Hermy, M., (2006). Green roofs as a tool for solving the rainwaterrunoff problem in the urbanized 21st century? Landscape and Urban Planning, 77(3): 217–226. DOI: https://doi.org/10.1016/j.landurbplan.2005.02.010

Navrud, S., & Ready, R. C. (Eds.). (2007). Environmental value transfer: Issues and methods. Springer. DOI: https://doi.org/10.1007/1-4020-5405-X

O’Donnell, E. C. (2020). The reality of multifunctional green infrastructure: Lessons from a stakeholder-driven design process. Sustainable Cities and Society, 52: 101816. DOI: https://doi.org/10.1016/j.scs.2019.101816

Osouli, A., Akhavan Bloorchian, A., Nassiri, S., & Marlow, S. L. (2017). Effect of sediment accumulation on best management practice (BMP) stormwater runoff volume reduction performance for roadways. Water, 9(12): 980. DOI: https://doi.org/10.3390/w9120980

Park, H. J., Eslaminia, M., & Kim, Y. R. (2014). Mechanistic evaluation of cracking in in-service asphalt pavements. Materials and Structures, 47(8): 1339-1358. DOI: https://doi.org/10.1617/s11527-014-0307-6

Petticrew, M., & Roberts, H. (2006). Systematic reviews in the social sciences: A practical guide. Oxford: Blackwell Publishing. DOI: https://doi.org/10.1002/9780470754887

Pfannerstill, M., Kühling, I., Hugenschmidt, C., Trepel, M., & Fohrer, N. (2016). Reactive ditches: A simple approach to implement denitrifying wood‑chip bioreactors to reduce nitrate exports into aquatic ecosystems. Environmental Earth Sciences, 75: Article 1063. DOI: https://doi.org/10.1007/s12665-016-5856-2

Poresky, A., Clary, J., Strecker, E., & Earles, A. (2011, January). International Stormwater Best Management Practices (BMP) Database technical summary: Volume reduction (Technical Summary). Water Environment Research Foundation; American Society of Civil Engineers; U.S. Environmental Protection Agency; Federal Highway Administration; American Public Works Association. Retrieved June 16, 2024, from https://static1.squarespace.com/static/5f8dbde10268ab224c895ad7/t/5fbd3bb97ad3fe66120f50a1/1606237121156/2011_VolumeReductionTechnicalSummary.pdf

Purvis, R. A., Winston, R. J., Hunt, W. F., Lipscomb, B., Narayanaswamy, K., McDaniel, A., ... & Libes, S. (2019). Evaluating the hydrologic benefits of a bioswale in Brunswick County, North Carolina (NC), USA. Water, 11(6): 1291. DOI https://doi.org/10.3390/w11061291

Rahimi, H. R., Tang, X., Singh, P. K., & Rahimi, S. (2020). Using travertine as pervious pavements to control urban-flooding and storm water quality. In K. Papadikis, C. S. Chin, I. Galobardes, G. Gong, & F. Guo (Eds.), Sustainable Buildings and Structures: Building a Sustainable Tomorrow. 81–87. CRC Press. https://doi.org/10.30560/ijas.v1n1p20

Raji, B., Tenpierik, M. J., & Van Den Dobbelsteen, A. (2015). The impact of greening systems on building energy performance: A literature review. Renewable and Sustainable Energy Reviews, 45, 610-623. DOI: https://doi.org/10.1016/j.rser.2015.02.011

Ramli, H. S., Shafii, H., Masram, H., Wee, S. T., Sarpin, N., & Ibrahim, M. H. (2023). Isu ‘poket development’ membawa kepada masalah banjir kilat di kawasan pinggir bandar. Research in Management of Technology and Business, 4(1), 1185–1202. Retrieved June 16: 2024, from https://publisher.uthm.edu.my/periodicals/index.php/rmtb/article/view/11681

Razzaghmanesh, M., & Beecham, S. (2018). A review of permeable pavement clogging investigations and recommended maintenance regimes. Water, 10(3): 337. DOI: https://doi.org/10.3390/w10030337

Rowe, D. B., Rugh, C. L., VanWoert, N., Monterusso, M. A., & Russell, D. K. (2003). Green roof slope, substrate depth, and vegetation influence runoff. In Proceedings of the 1st North American Green Roof Conference: Greening rooftops for sustainable communities. 354–362. The Cardinal Group. Retrieved April 22, 2024, from https://www.researchgate.net/publication/7852212

Sambito, M., Severino, A., Freni, G., & Neduzha, L. (2021). A systematic review of the hydrological, environmental and durability performance of permeable pavement systems. Sustainability, 13(8): 4509.DOI: https://doi.org/10.3390/su13084509

Samsuri, N., Abu Bakar, R., & Unjah, T. (2018). Flash flood impact in Kuala Lumpur–approach review and way forward. International Journal of the Malay World and Civilisation, 6(1): 69–76. Retrieved April 22, 2024, from https://journalarticle.ukm.my/12466/flash-flood-impact-in-kuala-lumpur-approach-review-and-way-forward.pdf

Scharenbroch, B. C., Morgenroth, J., & Maule, B. (2016). Tree species suitability to bioswales and impact on the urban water budget. Journal of environmental quality, 45(1): 199-206. DOI: https://doi.org/10.2134/jeq2015.01.0060

Shafique, M., Kim, R., & Kyung-Ho, K. (2018). Rainfall runoff mitigation by retrofitted permeable pavement in an urban area. Sustainability, 10(4): 1231. DOI: https://doi.org/10.3390/su10041231

Shetty, N. H., Elliott, R. M., Wang, M., Palmer, M. I., & Culligan, P. J. (2022). Comparing the hydrological performance of an irrigated native vegetation green roof with a conventional Sedum spp. green roof in New York City. PLoS One, 17(4): e0266593. DOI: https://doi.org/10.1371/journal.pone.0266593

Smith, K. G., Fowler, D. W., & Meyer, A. H. (1984). Laboratory and field evaluation of rapid-setting materials used for repair of concrete pavements (Research Report No. FHWA/TX-84/02+246-4F). Center for Transportation Research, University of Texas at Austin. Retrieved April 16, 2024, from https://library.ctr.utexas.edu/digitized/texasarchive/phase2/311-4-ctr.pdf

Soulis, K. X., Ntoulas, N., Nektarios, P. A., & Kargas, G. (2017). Runoff reduction from extensive green roofs having different substrate depth and plant cover. Ecological Engineering, 102, 80-89. DOI: https://doi.org/10.17660/ActaHortic.2017.1189.108

Speak, A. F., Rothwell, J. J., Lindley, S. J., & Smith, C. L. (2013). Rainwater runoff retention on an aged intensive green roof. Science of the Total Environment, 461–462: 28–38. DOI: https://doi.org/10.1016/j.scitotenv.2013.04.085

Stovin, V. (2010). The potential of green roofs to manage urban stormwater. Water and Environment Journal, 24(3), 192-199. DOI: https://doi.org/10.1111/j.1747-6593.2009.00174.x

VanWoert, N. D., Rowe, D. B., Andresen, J. A., Rugh, C. L., Fernandez, R. T., & Xiao, L. (2005). Green roof stormwater retention: effects of roof surface, slope, and media depth. Journal of environmental quality, 34(3): 1036-1044. DOI: https://doi.org/10.2134/jeq2004.0364

Versini, P. A., Kotelnikova, N., Poulhes, A., Tchiguirinskaia, I., Schertzer, D., & Leurent, F. (2018). A distributed modelling approach to assess the use of Blue and Green Infrastructures to fulfil stormwater management requirements. Landscape and Urban Planning, 173, 60-63. DOI: https://doi.org/10.1016/j.landurbplan.2018.02.001

Vijayaraghavan, K. (2016). Green roofs: A critical review on the role of components, benefits, limitations and trends. Renewable and sustainable energy reviews, 57: 740-752. DOI: https://doi.org/10.1016/j.rser.2015.12.119

Volder, A., & Dvorak, B. (2014). Event size, substrate water content and vegetation affect storm water retention efficiency of an un-irrigated extensive green roof system in Central Texas. Sustainable Cities and Society, 10, 59-64. DOI: https://doi.org/10.1016/j.scs.2013.05.005

Webber, J. L., Fletcher, T. D., Cunningham, L., Fu, G., Butler, D., & Burns, M. J. (2020). Is green infrastructure a viable strategy for managing urban surface water flooding? Urban Water Journal, 17(7), 598-608. DOI: https://doi.org/10.1080/1573062X.2019.1700286

Wen, X., Feng, Q., Deo, R. C., Wu, M., Yin, Z., Yang, L., & Singh, V. P. (2019). Two-phase extreme learning machines integrated with the complete ensemble empirical mode decomposition with adaptive noise algorithm for multi-scale runoff prediction problems. Journal of hydrology, 570: 167-184. DOI: https://doi.org/10.1016/j.jhydrol.2018.12.060

Whittinghill, L. J., Rowe, D. B., Andresen, J. A., & Cregg, B. M. (2015). Comparison of stormwater runoff from sedum, native prairie, and vegetable producing green roofs. Urban ecosystems, 18: 13-29. DOI: https://doi.org/10.1007/s11252-014-0386-8

Wilkinson, S., & Feitosa, R. C. (2016). Thermal performance of green roof retrofit. Green Roof Retrofit: building urban resilience, 62-84.

Xiao, Q., & McPherson, E. G. (2011). Performance of engineered soil and trees in a parking lot bioswale. Urban Water Journal, 8(4), 241–253. Retrieved February 24, 2024, from https://www.tandfonline.com/doi/abs/10.1080/1573062X.2011.596213

Yusoff, S. Y. M., & Thomas, R. (2021). Pemetaan Titik Panas Banjir Kilat Di Kuala Lumpur: Pemetaan Titik Panas Banjir. Malaysian Journal of Tropical Geography (MJTG), 47(1 and 2), 123-142. https://mjir.um.edu.my/index.php/MJTG/article/view/35196/14327

Zhang, H., Wang, Y., Lehman, D. E., Geng, Y., & Kuder, K. (2020). Time dependent drying shrinkage model for concrete with coarse and fine recycled aggregate. Cement & Concrete Composites, 105: Article 103426 DOI: https://doi.org/10.1016/j.cemconcomp.2019.103426

Zhu, H., Yu, M., Zhu, J., Lu, H., & Cao, R. (2019). Simulation study on effect of permeable pavement on reducing flood risk of urban runoff. International Journal of Transportation Science and Technology, 8(4): 373–382. DOI: https://doi.org/10.1016/j.ijtst.2018.12.001

Downloads

Published

2025-12-30

How to Cite

Mat Salleh, K., Ab Azis, S. S., Aziz, N., Baskaran, S., & Ab Rahman, N. H. (2025). Cost Efficiency of Green Infrastructure in Flash Flood Management: An Economic Model for Local Authorities. International Journal of Built Environment and Sustainability, 13(1), 27–40. https://doi.org/10.11113/ijbes.v13.n1.1629