Cost Efficiency of Green Infrastructure in Flash Flood Management: An Economic Model for Local Authorities
DOI:
https://doi.org/10.11113/ijbes.v13.n1.1629Keywords:
Green infrastructure, green roof, permeable pavements, bioswales, urban stormwaterAbstract
The gradual increase in the urbanization process over the years has increased the impervious surfaces while reducing green spaces, thereby contributing to the frequent occurrence of flash floods. The higher prevalence of flash foods has impacted the local authorities in spending huge amounts of costing for the purpose of repairing and cleaning the damaged public infrastructures. Therefore, numerous studies have proven the positive association between the availability of green infrastructures, namely green roofs, bioswales, and permeable pavements and their roles in minimizing stormwater runoff and flood risks in city area. However, there are limited studies which evaluate the economic worth of implementing these green infrastructures in preventing flash floods. Hence, it is vital to evaluate the potential long-term cost reductions from implementation of green infrastructure in flash flood mitigation to local authorities. Henceforth, this study aims to develop an economic model of the green infrastructure’s efficiency of green roof, permeable pavement, and bioswale in managing stormwater runoff. This study is conducted within the jurisdiction of Dewan Bandaraya Kuala Lumpur. It integrated data from systematic analysis from literature reviews and cost-benefit analysis based on interviews with local authorities to estimate the savings achieved through green infrastructure in flash flood management for local authorities. The findings show that the estimated cost savings by implementing green roof, permeable pavement and bioswale are approximately RM6,848, RM7,500 and RM6,875 per km² respectively. However, it is recommended to implement all three green infrastructures to maximize the overall effectiveness in reducing stormwater runoff and to achieve optimal cost savings from economic and environmental perspectives. This study is significant in promoting sustainable practices in infrastructure management and achieving the nation's Sustainable Development agenda.
References
Abera, L. E., Surbeck, C. Q., & Alexander, K. (2021). Evaluating the effect of city ordinances on the implementation and performance of green stormwater infrastructure (GSI). Environmental Challenges, 4: 100183. DOI: https://doi.org/10.1016/j.envc.2021.100183
Anderson, B. S., Phillips, B. M., Voorhees, J. P., & Cahn, M. (2017). Vegetated treatment systems for removing contaminants associated with surface water toxicity in agriculture and urban runoff. Journal of Visualized Experiments, 123: e55391. DOI: https://doi.org/10.3791/55391
Antunes, L. N., Ghisi, E., & Thives, L. P. (2018). Permeable pavements life cycle assessment: A literature review. Water, 10(11): 1575. DOI: https://doi.org/10.3390/w10111575
Azis, S. S. A., & Zulkifli, N. A. A. (2021). Green roof for sustainable urban flash flood control via cost benefit approach for local authority. Urban Forestry & Urban Greening, 57: 126876. DOI: https://doi.org/10.1016/j.ufug.2020.126876
Ball, J. E., & Rankin, K. (2010). The hydrological performance of a permeable pavement. Urban Water Journal, 7(2): 79-90. https://doi.org/10.1080/15730620902969773
Balut, S. J., & Gulledge, T. R., Jr. (2001). Cost analysis. In S. I. Gass & C. M. Harris (Eds.), Encyclopedia of operations research and management science. 152–155. Springer. DOI: https://doi.org/10.1007/1-4020-0611-X_174
Bartens, J., Day, S. D., Harris, J. R., Dove, J. E., & Wynn, T. M. (2008). Can urban tree roots improve infiltration through compacted subsoils for stormwater management?. Journal of environmental quality, 37(6): 2048-2057. DOI: https://doi.org/10.2134/jeq2008.0117
Brankovic, M. D., & Protic, I. B. (2018). Bioswales as elements of green infrastructure–foreign practice and possibilities of use in the district of the City of Nis, Serbia. In Proceedings of the 2nd International Conference on Urban Planning. 347-356. (https://www.climatescan.nl/uploads/projects/4503/files/516/ICUP2018%20Bioswales%20as%20elements%20of%20green%20infrastructure%20Serbia%20FCB%20interesting%20show%20cases.pdf)
Cascone, S. (2019). Green roof design: State of the art on technology and materials. Sustainability, 11(11): 3020. DOI: https://doi.org/10.3390/su11113020
Chai, C. T., Putuhena, F. J., & Selaman, O. S. (2017). A modelling study of the event-based retention performance of green roof under the hot-humid tropical climate in Kuching. Water Science and Technology, 76(11): 2988-2999. DOI: https://doi.org/10.2166/wst.2017.472
Cilliers, E. J., & Cilliers, S. S. (2016). Planning for green infrastructure: Options for South African cities (Research Report). South African Cities Network. Retrieved December 25, 2024, from https://www.researchgate.net/publication/317303645
Clark, A. M. (2016). Why qualitative research needs more and better systematic review. International journal of qualitative methods, 15(1):1609406916672741. DOI: https://doi.org/10.1177/1609406916672741
Collins, K. A. (2007). A field evaluation of four types of permeable pavement with respect to water quality improvement and flood control (Master’s thesis). North Carolina State University. Retrieved March 6, 2023, from https://repository.lib.ncsu.edu/items/8f1bb40f-a029-4264-bfaa-487e42373bb9
Collins, K. A., Hunt, W. F., & Hathaway, J. M. (2008). Hydrologic comparison of four types of permeable pavement and standard asphalt in eastern North Carolina. Journal of Hydrologic Engineering, 13(12): 1146–1157. DOI: https://doi.org/10.1061/(ASCE)1084-0699(2008)13:12(1146)
Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., Orru, H., ... & Faehnle, M. (2014). Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. Journal of environmental management, 146: 107-115. DOI: https://doi.org/10.1016/j.jenvman.2014.07.025
DeNardo, J.C., Jarrett, A.R., Manbeck, H.B., Beattie, D.J., Berghage, R.D. (2005). Stormwater mitigation and surface temperature reduction by green roofs. Transactions of the American Society of Agricultural Engineers 48(4): 1491– 1496. DOI: https://doi.org/10.13031/2013.19181
Defra. (2007). An introductory guide to valuing ecosystem services. London, UK: DEFRA. Retrieved October 13, 2023, from https://sciencesearch.defra.gov.uk/
Department of Statistics Malaysia. (2023). Special report on impact of floods in Malaysia 2022. Department of Statistics Malaysia. Retrieved January 19, 2025, from https://www.dosm.gov.my/uploads/release-content/file_20230307164011.pdf.
Drake, J., Bradford, A., Van Seters, T., & MacMillan, G. (2012). Evaluation of permeable pavements in cold climates: Kortright Centre, Vaughan (Final report). Toronto and Region Conservation Authority. Retrieved June 12, 2024, from https://owl.cwp.org/mdocs-posts/drake-et-al-2012-evaluation-of-permeable-pavements/
Dreelin, E. A., Fowler, L., & Carroll, C. R. (2006). A test of porous pavement effectiveness on clay soils during natural storm events. Water research, 40(4): 799-805. DOI: https://doi.org/10.1016/j.watres.2005.12.002
European Commission. (2012). The multifunctionality of green infrastructure (Science for Environment Policy, In‐depth Report). Directorate‐General for Environment. Retrieved June 16, 2024, from http://ec.europa.eu/environment/nature/ecosystems/docs/Green_Infrastructure.pdf
Fassman, E. A., & Blackbourn, S. (2010). Urban runoff mitigation by a permeable pavement system over impermeable soil. Journal of hydrologic engineering, 15(6): 475-485. DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000238
Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S., ... & Viklander, M. (2015). SUDS, LID, BMPs, WSUD and more–The evolution and application of terminology surrounding urban drainage. Urban water journal, 12(7): 525-542. DOI: https://doi.org/10.1080/1573062X.2014.916314
Foster, J., Lowe, A., & Winkelman, S. (2011, February). The value of green infrastructure for urban climate adaptation (Center for Clean Air Policy Technical Report No. 750(1), pp. 1–52). Center for Clean Air Policy. Retrieved June 16, 2024, from http://www.savetherain.us/wp content/uploads/2011/10/Green_Infrastructure_Urban_Climate_Adaptation.pdf
Fox, N. (2009). Using interviews in a research project (Resource Pack). NIHR Research Design Service for the East Midlands & Yorkshire & the Humber. Retrieved April 3, 2024, from https://docslib.org/doc/1603704/chapter-3-research-methodology
Gaitan, S., Van De Giesen, N. C., & Ten Veldhuis, J. A. E. (2016). Can urban pluvial flooding be predicted by open spatial data and weather data?. Environmental Modelling & Software, 85: 156-171. DOI: https://doi.org/10.1016/j.envsoft.2016.08.007
Getter KL, Rowe DB, Andresen JA (2007). Quantifying the effect of slope on extensive green roof stormwater retention. Ecological Engineering, 31(4): 225–31. DOI: https://doi.org/10.1016/j.ecoleng.2007.06.004
Gong, Y., Yin, D., Li, J., Zhang, X., Wang, W., Fang, X., & Wang, Q. (2019). Performance assessment of extensive green roof runoff flow and quality control capacity based on pilot experiments. Science of the Total Environment, 687: 505–515. DOI: https://doi.org/10.1016/j.scitotenv.2019.06.100
Green, D., O'Donnell, E., Johnson, M., Slater, L., Thorne, C., Zheng, S., ... & Boothroyd, R. J. (2021). Green infrastructure: The future of urban flood risk management?. Wiley Interdisciplinary Reviews: Water, 8(6): e1560. DOI: https://doi.org/10.1002/wat2.1560
Gregoire B, Clausen J (2011). Effect of a modular extensive green roof on storm water runoff and water quality. Ecological Engineering, 37:963–9. DOI: https://doi.org/10.1016/j.ecoleng.2011.02.004
Gustafsson, M., & von Platen, H. N. (2018). Nature-based solutions for flood risk reduction. Contamination Control and Climate Change Adaption, Institute of Coimbra, Portugal. Retrieved April 22, 2024, from https://www.diva-portal.org/smash/get/%20diva2:1254673/FULLTEXT01.pdf
Hathaway, A. M., Hunt, W. F., & Jennings, G. D. (2008). A field study of green roof hydrologic and water quality performance. Transactions of the ASABE, 51(1): 37–43. DOI: https://doi.org/10.13031/2013.24225
Hu, S., Liu, L., Cao, J., Chen, N., & Wang, Z. (2019). Water resilience by centipedegrass green roof: A case study. Buildings, 9(6): 141. DOI: https://doi.org/10.3390/buildings9060141
Hunt, W. F., Hathaway, J. M., Winston, R. J., & Jadlocki, S. J. (2010). Runoff volume reduction by a level spreader–vegetated filter strip system in suburban Charlotte, N.C. Journal of Hydrologic Engineering, 15(6): 499–503. DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000160
Imran, H. M., Akib, S., & Karim, M. R. (2013). Permeable pavement and stormwater management systems: a review. Environmental technology, 34(18): 2649-2656. DOI: https://doi.org/10.1080/09593330.2013.782573
Jiang, C., Li, J., Li, H., Li, Y., & Zhang, Z. (2020). Low-impact development facilities for stormwater runoff treatment: Field monitoring and assessment in Xi’an area, China. Journal of Hydrology, 585: 124803. DOI: https://doi.org/10.1016/j.jhydrol.2020.124803
Johnston, R. J., Rolfe, J., Rosenberger, R. S., & Brouwer, R. (Eds.). (2015). Benefit transfer of environmental and resource values: A guide for researchers and practitioners (The Economics of Non Market Goods and Resources. 14. Springer. DOI: https://doi.org/10.1007/978-94-017-9930-0
Keeley, M., Koburger, A., Dolowitz, D. P., Medearis, D., Nickel, D., & Shuster, W. (2013). Perspectives on the use of green infrastructure for stormwater management in Cleveland and Milwaukee. Environmental management, 51: 1093-1108. DOI: https://doi.org/10.1007/s00267-013-0032-x
Kõiv‑Vainik, M., Kill, K., Espenberg, M., Uuemaa, E., Teemusk, A., Maddison, M., Palta, M. M., Török, L., Mander, Ü., Scholz, M., & Kasak, K. (2022). Urban stormwater retention capacity of nature‑based solutions at different climatic conditions. Nature‑Based Solutions, 2: Article 100038. DOI: https://doi.org/10.1016/j.nbsj.2022.100038
Kuok, K. K., Chiu, P. C., Chin, M. Y., Rahman, R., & Bakri, M. K. B. (2024). Effectiveness of bioretention system and vegetated swale for reducing urban flood risk in equatorial region: A case study in Kuching, Malaysia. Sustainable Water Resources Management, 10: Article 76. DOI: https://doi.org/10.1007/s40899-024-01081-8
Kwiatkowski, M., Welker, A. L., Traver, R. G., Vanacore, M., & Ladd, T. (2007). Evaluation of an infiltration best management practice utilizing pervious concrete. Journal of the American Water Resources Association, 43(5): 1208–1222. DOI: https://doi.org/10.1111/j.1752-1688.2007.00104.x
Le Trung, N., Khawaja, M., Beyranvand, E., Bucchi, D., Singh, A., & Alam, A. A. (2018). Approaching a nearly zeroenergy building in integrated building design by using green roof and double skin façade as major energy saving strategies. Integrated Building design. DOI: https://doi.org/10.13140/RG.2.2.10839.32163
Li, T., Tang, X., Xia, J., Gong, G., Xu, Y., & Li, M. (2024). Effect of eco‑friendly pervious concrete pavement with travertine waste and sand on the heavy metal removal and runoff reduction performance. Journal of Environmental Management, 366: Article 121757. DOI: https://doi.org/10.1016/j.jenvman.2024.121757
Liu, W., Feng, Q., Chen, W., & Wei, W. (2020). Assessing the runoff retention of extensive green roofs using runoff coefficients and curve numbers and the impacts of substrate moisture. Hydrology Research, 51(4), 635–647. https://doi.org/10.2166/nh.2020.004
Mansor, N. F. A., Md Nor, N. N. F., Idris, N. R. A., Abdul Rashid, S. M. R., Mohamad Yusof, I., & Kemarau, R. (2023). Bencana banjir dan impak terhadap penduduk: Kajian kes di Kedah (Flood disaster and impact on residents: Case study in Kedah). GEOGRAFI, 11(1): 44–67. DOI: https://doi.org/10.37134/geografi.vol11.1.3.2023
Marchioni, M., Becciu, G., & Silva, C. (2015). Critical analysis of the Brazilian national standard for concrete permeable pavement. WIT Transactions on Ecology and the Environment, 192: 443–453. DOI: https://doi.org/10.2495/ECO150391
McFarland, A. R., Larsen, L., Yeshitela, K., Engida, A. N., & Love, N. G. (2019). Guide for using green infrastructure in urban environments for stormwater management. Environmental science: Water research & technology, 5(4): 643-659. https://doi.org/10.2495/ECO150391 DOI: https://doi.org/10.1039/C8EW00498F
Mentens, J., Raes, D., Hermy, M., (2006). Green roofs as a tool for solving the rainwaterrunoff problem in the urbanized 21st century? Landscape and Urban Planning, 77(3): 217–226. DOI: https://doi.org/10.1016/j.landurbplan.2005.02.010
Navrud, S., & Ready, R. C. (Eds.). (2007). Environmental value transfer: Issues and methods. Springer. DOI: https://doi.org/10.1007/1-4020-5405-X
O’Donnell, E. C. (2020). The reality of multifunctional green infrastructure: Lessons from a stakeholder-driven design process. Sustainable Cities and Society, 52: 101816. DOI: https://doi.org/10.1016/j.scs.2019.101816
Osouli, A., Akhavan Bloorchian, A., Nassiri, S., & Marlow, S. L. (2017). Effect of sediment accumulation on best management practice (BMP) stormwater runoff volume reduction performance for roadways. Water, 9(12): 980. DOI: https://doi.org/10.3390/w9120980
Park, H. J., Eslaminia, M., & Kim, Y. R. (2014). Mechanistic evaluation of cracking in in-service asphalt pavements. Materials and Structures, 47(8): 1339-1358. DOI: https://doi.org/10.1617/s11527-014-0307-6
Petticrew, M., & Roberts, H. (2006). Systematic reviews in the social sciences: A practical guide. Oxford: Blackwell Publishing. DOI: https://doi.org/10.1002/9780470754887
Pfannerstill, M., Kühling, I., Hugenschmidt, C., Trepel, M., & Fohrer, N. (2016). Reactive ditches: A simple approach to implement denitrifying wood‑chip bioreactors to reduce nitrate exports into aquatic ecosystems. Environmental Earth Sciences, 75: Article 1063. DOI: https://doi.org/10.1007/s12665-016-5856-2
Poresky, A., Clary, J., Strecker, E., & Earles, A. (2011, January). International Stormwater Best Management Practices (BMP) Database technical summary: Volume reduction (Technical Summary). Water Environment Research Foundation; American Society of Civil Engineers; U.S. Environmental Protection Agency; Federal Highway Administration; American Public Works Association. Retrieved June 16, 2024, from https://static1.squarespace.com/static/5f8dbde10268ab224c895ad7/t/5fbd3bb97ad3fe66120f50a1/1606237121156/2011_VolumeReductionTechnicalSummary.pdf
Purvis, R. A., Winston, R. J., Hunt, W. F., Lipscomb, B., Narayanaswamy, K., McDaniel, A., ... & Libes, S. (2019). Evaluating the hydrologic benefits of a bioswale in Brunswick County, North Carolina (NC), USA. Water, 11(6): 1291. DOI https://doi.org/10.3390/w11061291
Rahimi, H. R., Tang, X., Singh, P. K., & Rahimi, S. (2020). Using travertine as pervious pavements to control urban-flooding and storm water quality. In K. Papadikis, C. S. Chin, I. Galobardes, G. Gong, & F. Guo (Eds.), Sustainable Buildings and Structures: Building a Sustainable Tomorrow. 81–87. CRC Press. https://doi.org/10.30560/ijas.v1n1p20
Raji, B., Tenpierik, M. J., & Van Den Dobbelsteen, A. (2015). The impact of greening systems on building energy performance: A literature review. Renewable and Sustainable Energy Reviews, 45, 610-623. DOI: https://doi.org/10.1016/j.rser.2015.02.011
Ramli, H. S., Shafii, H., Masram, H., Wee, S. T., Sarpin, N., & Ibrahim, M. H. (2023). Isu ‘poket development’ membawa kepada masalah banjir kilat di kawasan pinggir bandar. Research in Management of Technology and Business, 4(1), 1185–1202. Retrieved June 16: 2024, from https://publisher.uthm.edu.my/periodicals/index.php/rmtb/article/view/11681
Razzaghmanesh, M., & Beecham, S. (2018). A review of permeable pavement clogging investigations and recommended maintenance regimes. Water, 10(3): 337. DOI: https://doi.org/10.3390/w10030337
Rowe, D. B., Rugh, C. L., VanWoert, N., Monterusso, M. A., & Russell, D. K. (2003). Green roof slope, substrate depth, and vegetation influence runoff. In Proceedings of the 1st North American Green Roof Conference: Greening rooftops for sustainable communities. 354–362. The Cardinal Group. Retrieved April 22, 2024, from https://www.researchgate.net/publication/7852212
Sambito, M., Severino, A., Freni, G., & Neduzha, L. (2021). A systematic review of the hydrological, environmental and durability performance of permeable pavement systems. Sustainability, 13(8): 4509.DOI: https://doi.org/10.3390/su13084509
Samsuri, N., Abu Bakar, R., & Unjah, T. (2018). Flash flood impact in Kuala Lumpur–approach review and way forward. International Journal of the Malay World and Civilisation, 6(1): 69–76. Retrieved April 22, 2024, from https://journalarticle.ukm.my/12466/flash-flood-impact-in-kuala-lumpur-approach-review-and-way-forward.pdf
Scharenbroch, B. C., Morgenroth, J., & Maule, B. (2016). Tree species suitability to bioswales and impact on the urban water budget. Journal of environmental quality, 45(1): 199-206. DOI: https://doi.org/10.2134/jeq2015.01.0060
Shafique, M., Kim, R., & Kyung-Ho, K. (2018). Rainfall runoff mitigation by retrofitted permeable pavement in an urban area. Sustainability, 10(4): 1231. DOI: https://doi.org/10.3390/su10041231
Shetty, N. H., Elliott, R. M., Wang, M., Palmer, M. I., & Culligan, P. J. (2022). Comparing the hydrological performance of an irrigated native vegetation green roof with a conventional Sedum spp. green roof in New York City. PLoS One, 17(4): e0266593. DOI: https://doi.org/10.1371/journal.pone.0266593
Smith, K. G., Fowler, D. W., & Meyer, A. H. (1984). Laboratory and field evaluation of rapid-setting materials used for repair of concrete pavements (Research Report No. FHWA/TX-84/02+246-4F). Center for Transportation Research, University of Texas at Austin. Retrieved April 16, 2024, from https://library.ctr.utexas.edu/digitized/texasarchive/phase2/311-4-ctr.pdf
Soulis, K. X., Ntoulas, N., Nektarios, P. A., & Kargas, G. (2017). Runoff reduction from extensive green roofs having different substrate depth and plant cover. Ecological Engineering, 102, 80-89. DOI: https://doi.org/10.17660/ActaHortic.2017.1189.108
Speak, A. F., Rothwell, J. J., Lindley, S. J., & Smith, C. L. (2013). Rainwater runoff retention on an aged intensive green roof. Science of the Total Environment, 461–462: 28–38. DOI: https://doi.org/10.1016/j.scitotenv.2013.04.085
Stovin, V. (2010). The potential of green roofs to manage urban stormwater. Water and Environment Journal, 24(3), 192-199. DOI: https://doi.org/10.1111/j.1747-6593.2009.00174.x
VanWoert, N. D., Rowe, D. B., Andresen, J. A., Rugh, C. L., Fernandez, R. T., & Xiao, L. (2005). Green roof stormwater retention: effects of roof surface, slope, and media depth. Journal of environmental quality, 34(3): 1036-1044. DOI: https://doi.org/10.2134/jeq2004.0364
Versini, P. A., Kotelnikova, N., Poulhes, A., Tchiguirinskaia, I., Schertzer, D., & Leurent, F. (2018). A distributed modelling approach to assess the use of Blue and Green Infrastructures to fulfil stormwater management requirements. Landscape and Urban Planning, 173, 60-63. DOI: https://doi.org/10.1016/j.landurbplan.2018.02.001
Vijayaraghavan, K. (2016). Green roofs: A critical review on the role of components, benefits, limitations and trends. Renewable and sustainable energy reviews, 57: 740-752. DOI: https://doi.org/10.1016/j.rser.2015.12.119
Volder, A., & Dvorak, B. (2014). Event size, substrate water content and vegetation affect storm water retention efficiency of an un-irrigated extensive green roof system in Central Texas. Sustainable Cities and Society, 10, 59-64. DOI: https://doi.org/10.1016/j.scs.2013.05.005
Webber, J. L., Fletcher, T. D., Cunningham, L., Fu, G., Butler, D., & Burns, M. J. (2020). Is green infrastructure a viable strategy for managing urban surface water flooding? Urban Water Journal, 17(7), 598-608. DOI: https://doi.org/10.1080/1573062X.2019.1700286
Wen, X., Feng, Q., Deo, R. C., Wu, M., Yin, Z., Yang, L., & Singh, V. P. (2019). Two-phase extreme learning machines integrated with the complete ensemble empirical mode decomposition with adaptive noise algorithm for multi-scale runoff prediction problems. Journal of hydrology, 570: 167-184. DOI: https://doi.org/10.1016/j.jhydrol.2018.12.060
Whittinghill, L. J., Rowe, D. B., Andresen, J. A., & Cregg, B. M. (2015). Comparison of stormwater runoff from sedum, native prairie, and vegetable producing green roofs. Urban ecosystems, 18: 13-29. DOI: https://doi.org/10.1007/s11252-014-0386-8
Wilkinson, S., & Feitosa, R. C. (2016). Thermal performance of green roof retrofit. Green Roof Retrofit: building urban resilience, 62-84.
Xiao, Q., & McPherson, E. G. (2011). Performance of engineered soil and trees in a parking lot bioswale. Urban Water Journal, 8(4), 241–253. Retrieved February 24, 2024, from https://www.tandfonline.com/doi/abs/10.1080/1573062X.2011.596213
Yusoff, S. Y. M., & Thomas, R. (2021). Pemetaan Titik Panas Banjir Kilat Di Kuala Lumpur: Pemetaan Titik Panas Banjir. Malaysian Journal of Tropical Geography (MJTG), 47(1 and 2), 123-142. https://mjir.um.edu.my/index.php/MJTG/article/view/35196/14327
Zhang, H., Wang, Y., Lehman, D. E., Geng, Y., & Kuder, K. (2020). Time dependent drying shrinkage model for concrete with coarse and fine recycled aggregate. Cement & Concrete Composites, 105: Article 103426 DOI: https://doi.org/10.1016/j.cemconcomp.2019.103426
Zhu, H., Yu, M., Zhu, J., Lu, H., & Cao, R. (2019). Simulation study on effect of permeable pavement on reducing flood risk of urban runoff. International Journal of Transportation Science and Technology, 8(4): 373–382. DOI: https://doi.org/10.1016/j.ijtst.2018.12.001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Built Environment and Sustainability

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright of articles that appear in International Journal of Built Environment and Sustainability belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions or any other reproductions of similar nature.
Authors who publish with this journal agree to the following terms:
- This Journal applies Creative Commons Licenses of CC-BY-NC-SA
- Authors retain copyright and grant the journal right of publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).















